Properties

Label 3800b
Number of curves 22
Conductor 38003800
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 3800b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3800.c2 3800b1 [0,1,0,15083,701338][0, 1, 0, -15083, 701338] 12144109568/13032112144109568/130321 40725312500004072531250000 [2][2] 89608960 1.23521.2352 Γ0(N)\Gamma_0(N)-optimal
3800.c1 3800b2 [0,1,0,240708,45375088][0, 1, 0, -240708, 45375088] 3084800518928/3613084800518928/361 180500000000180500000000 [2][2] 1792017920 1.58181.5818  

Rank

sage: E.rank()
 

The elliptic curves in class 3800b have rank 00.

Complex multiplication

The elliptic curves in class 3800b do not have complex multiplication.

Modular form 3800.2.a.b

sage: E.q_eigenform(10)
 
q2q3+2q7+q9+4q11+8q17q19+O(q20)q - 2 q^{3} + 2 q^{7} + q^{9} + 4 q^{11} + 8 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.