Properties

Label 3800d
Number of curves $2$
Conductor $3800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 3800d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3800.f2 3800d1 \([0, -1, 0, -650883, -202065988]\) \(-121981271658244096/115966796875\) \(-28991699218750000\) \([2]\) \(53760\) \(2.0807\) \(\Gamma_0(N)\)-optimal
3800.f1 3800d2 \([0, -1, 0, -10416508, -12936440988]\) \(31248575021659890256/28203125\) \(112812500000000\) \([2]\) \(107520\) \(2.4273\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3800d have rank \(0\).

Complex multiplication

The elliptic curves in class 3800d do not have complex multiplication.

Modular form 3800.2.a.d

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} + 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.