sage:E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 3800d
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3800.f2 |
3800d1 |
[0,−1,0,−650883,−202065988] |
−121981271658244096/115966796875 |
−28991699218750000 |
[2] |
53760 |
2.0807
|
Γ0(N)-optimal |
3800.f1 |
3800d2 |
[0,−1,0,−10416508,−12936440988] |
31248575021659890256/28203125 |
112812500000000 |
[2] |
107520 |
2.4273
|
|
sage:E.rank()
The elliptic curves in class 3800d have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
19 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+T+3T2 |
1.3.b
|
7 |
1+3T+7T2 |
1.7.d
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1+T+13T2 |
1.13.b
|
17 |
1−5T+17T2 |
1.17.af
|
23 |
1−T+23T2 |
1.23.ab
|
29 |
1+3T+29T2 |
1.29.d
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 3800d do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.