Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 3822.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3822.a1 | 3822f3 | \([1, 1, 0, -1276769, 554763189]\) | \(-1956469094246217097/36641439744\) | \(-4310828744441856\) | \([]\) | \(93312\) | \(2.1244\) | |
3822.a2 | 3822f2 | \([1, 1, 0, -5954, 1691124]\) | \(-198461344537/10417365504\) | \(-1225592634180096\) | \([]\) | \(31104\) | \(1.5751\) | |
3822.a3 | 3822f1 | \([1, 1, 0, 661, -61851]\) | \(270840023/14329224\) | \(-1685818874376\) | \([]\) | \(10368\) | \(1.0258\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3822.a have rank \(0\).
Complex multiplication
The elliptic curves in class 3822.a do not have complex multiplication.Modular form 3822.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.