Properties

Label 3822.a
Number of curves 33
Conductor 38223822
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3822.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3822.a1 3822f3 [1,1,0,1276769,554763189][1, 1, 0, -1276769, 554763189] 1956469094246217097/36641439744-1956469094246217097/36641439744 4310828744441856-4310828744441856 [][] 9331293312 2.12442.1244  
3822.a2 3822f2 [1,1,0,5954,1691124][1, 1, 0, -5954, 1691124] 198461344537/10417365504-198461344537/10417365504 1225592634180096-1225592634180096 [][] 3110431104 1.57511.5751  
3822.a3 3822f1 [1,1,0,661,61851][1, 1, 0, 661, -61851] 270840023/14329224270840023/14329224 1685818874376-1685818874376 [][] 1036810368 1.02581.0258 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3822.a have rank 00.

Complex multiplication

The elliptic curves in class 3822.a do not have complex multiplication.

Modular form 3822.2.a.a

sage: E.q_eigenform(10)
 
qq2q3+q43q5+q6q8+q9+3q10+3q11q12q13+3q15+q16+3q17q18+7q19+O(q20)q - q^{2} - q^{3} + q^{4} - 3 q^{5} + q^{6} - q^{8} + q^{9} + 3 q^{10} + 3 q^{11} - q^{12} - q^{13} + 3 q^{15} + q^{16} + 3 q^{17} - q^{18} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.