Properties

Label 382200k
Number of curves 44
Conductor 382200382200
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Elliptic curves in class 382200k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
382200.k4 382200k1 [0,1,0,59617,716988][0, -1, 0, 59617, -716988] 796706816/468195796706816/468195 13770668388750000-13770668388750000 [2][2] 29491202949120 1.78621.7862 Γ0(N)\Gamma_0(N)-optimal
382200.k3 382200k2 [0,1,0,240508,5518988][0, -1, 0, -240508, -5518988] 3269383504/18632253269383504/1863225 876826232100000000876826232100000000 [2,2][2, 2] 58982405898240 2.13272.1327  
382200.k2 382200k3 [0,1,0,2470008,1488246012][0, -1, 0, -2470008, 1488246012] 885341342596/4606875885341342596/4606875 86719077900000000008671907790000000000 [2][2] 1179648011796480 2.47932.4793  
382200.k1 382200k4 [0,1,0,2813008,1811413988][0, -1, 0, -2813008, -1811413988] 1307761493476/29989051307761493476/2998905 56450907895200000005645090789520000000 [2][2] 1179648011796480 2.47932.4793  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 382200k have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
5511
7711
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 18T+19T2 1 - 8 T + 19 T^{2} 1.19.ai
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 382200k do not have complex multiplication.

Modular form 382200.2.a.k

Copy content sage:E.q_eigenform(10)
 
qq3+q94q11q136q17+8q19+O(q20)q - q^{3} + q^{9} - 4 q^{11} - q^{13} - 6 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.