sage:E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 382200k
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
382200.k4 |
382200k1 |
[0,−1,0,59617,−716988] |
796706816/468195 |
−13770668388750000 |
[2] |
2949120 |
1.7862
|
Γ0(N)-optimal |
382200.k3 |
382200k2 |
[0,−1,0,−240508,−5518988] |
3269383504/1863225 |
876826232100000000 |
[2,2] |
5898240 |
2.1327
|
|
382200.k2 |
382200k3 |
[0,−1,0,−2470008,1488246012] |
885341342596/4606875 |
8671907790000000000 |
[2] |
11796480 |
2.4793
|
|
382200.k1 |
382200k4 |
[0,−1,0,−2813008,−1811413988] |
1307761493476/2998905 |
5645090789520000000 |
[2] |
11796480 |
2.4793
|
|
sage:E.rank()
The elliptic curves in class 382200k have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1 |
7 | 1 |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+4T+11T2 |
1.11.e
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+23T2 |
1.23.a
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 382200k do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.