Properties

Label 3825.k
Number of curves $1$
Conductor $3825$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 3825.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3825.k1 3825g1 \([1, -1, 0, -27, -54]\) \(-121945/17\) \(-309825\) \([]\) \(360\) \(-0.21489\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3825.k1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3825.k do not have complex multiplication.

Modular form 3825.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{7} - 3 q^{8} + 4 q^{11} + q^{13} - q^{14} - q^{16} + q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display