Show commands:
SageMath
E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 3825.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3825.k1 | 3825g1 | \([1, -1, 0, -27, -54]\) | \(-121945/17\) | \(-309825\) | \([]\) | \(360\) | \(-0.21489\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 3825.k1 has rank \(1\).
Complex multiplication
The elliptic curves in class 3825.k do not have complex multiplication.Modular form 3825.2.a.k
sage: E.q_eigenform(10)