Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 384.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
384.b1 | 384d1 | \([0, -1, 0, -3, 3]\) | \(16000/3\) | \(768\) | \([2]\) | \(16\) | \(-0.72845\) | \(\Gamma_0(N)\)-optimal |
384.b2 | 384d2 | \([0, -1, 0, 7, 9]\) | \(4000/9\) | \(-73728\) | \([2]\) | \(32\) | \(-0.38187\) |
Rank
sage: E.rank()
The elliptic curves in class 384.b have rank \(1\).
Complex multiplication
The elliptic curves in class 384.b do not have complex multiplication.Modular form 384.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.