sage:E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 384.d
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
384.d1 |
384f2 |
[0,−1,0,−141,693] |
19056256/27 |
442368 |
[2] |
96 |
−0.013528
|
|
384.d2 |
384f1 |
[0,−1,0,−6,18] |
−219488/729 |
−93312 |
[2] |
48 |
−0.36010
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 384.d have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−4T+5T2 |
1.5.ae
|
7 |
1+2T+7T2 |
1.7.c
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 384.d do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.