Properties

Label 384.d
Number of curves 22
Conductor 384384
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Elliptic curves in class 384.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
384.d1 384f2 [0,1,0,141,693][0, -1, 0, -141, 693] 19056256/2719056256/27 442368442368 [2][2] 9696 0.013528-0.013528  
384.d2 384f1 [0,1,0,6,18][0, -1, 0, -6, 18] 219488/729-219488/729 93312-93312 [2][2] 4848 0.36010-0.36010 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 384.d have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 14T+5T2 1 - 4 T + 5 T^{2} 1.5.ae
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 18T+19T2 1 - 8 T + 19 T^{2} 1.19.ai
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 384.d do not have complex multiplication.

Modular form 384.2.a.d

Copy content sage:E.q_eigenform(10)
 
qq3+4q52q7+q9+4q112q134q152q17+8q19+O(q20)q - q^{3} + 4 q^{5} - 2 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{15} - 2 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.