Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 384.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
384.d1 | 384f2 | \([0, -1, 0, -141, 693]\) | \(19056256/27\) | \(442368\) | \([2]\) | \(96\) | \(-0.013528\) | |
384.d2 | 384f1 | \([0, -1, 0, -6, 18]\) | \(-219488/729\) | \(-93312\) | \([2]\) | \(48\) | \(-0.36010\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 384.d have rank \(0\).
Complex multiplication
The elliptic curves in class 384.d do not have complex multiplication.Modular form 384.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.