Properties

Label 384.d
Number of curves $2$
Conductor $384$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 384.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
384.d1 384f2 \([0, -1, 0, -141, 693]\) \(19056256/27\) \(442368\) \([2]\) \(96\) \(-0.013528\)  
384.d2 384f1 \([0, -1, 0, -6, 18]\) \(-219488/729\) \(-93312\) \([2]\) \(48\) \(-0.36010\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 384.d have rank \(0\).

Complex multiplication

The elliptic curves in class 384.d do not have complex multiplication.

Modular form 384.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} - 2 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{15} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.