Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 384.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
384.f1 | 384c2 | \([0, 1, 0, -13, 11]\) | \(16000/3\) | \(49152\) | \([2]\) | \(32\) | \(-0.38187\) | |
384.f2 | 384c1 | \([0, 1, 0, 2, 2]\) | \(4000/9\) | \(-1152\) | \([2]\) | \(16\) | \(-0.72845\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 384.f have rank \(0\).
Complex multiplication
The elliptic curves in class 384.f do not have complex multiplication.Modular form 384.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.