Properties

Label 384.f
Number of curves 22
Conductor 384384
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 384.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
384.f1 384c2 [0,1,0,13,11][0, 1, 0, -13, 11] 16000/316000/3 4915249152 [2][2] 3232 0.38187-0.38187  
384.f2 384c1 [0,1,0,2,2][0, 1, 0, 2, 2] 4000/94000/9 1152-1152 [2][2] 1616 0.72845-0.72845 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 384.f have rank 00.

Complex multiplication

The elliptic curves in class 384.f do not have complex multiplication.

Modular form 384.2.a.f

sage: E.q_eigenform(10)
 
q+q32q7+q9+4q11+6q13+6q17+O(q20)q + q^{3} - 2 q^{7} + q^{9} + 4 q^{11} + 6 q^{13} + 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.