Properties

Label 3840.b
Number of curves $2$
Conductor $3840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 3840.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3840.b1 3840q2 \([0, -1, 0, -23661, 1407861]\) \(44708635815488/34171875\) \(1119744000000\) \([2]\) \(10752\) \(1.2442\)  
3840.b2 3840q1 \([0, -1, 0, -1791, 12555]\) \(1241603628992/597871125\) \(306110016000\) \([2]\) \(5376\) \(0.89763\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3840.b have rank \(0\).

Complex multiplication

The elliptic curves in class 3840.b do not have complex multiplication.

Modular form 3840.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} + q^{9} - 2 q^{11} + 2 q^{13} + q^{15} - 8 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.