Show commands:
SageMath
E = EllipticCurve("bb1")
E.isogeny_class()
Elliptic curves in class 3840.bb
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3840.bb1 | 3840z2 | \([0, 1, 0, -365, -2037]\) | \(164566592/46875\) | \(1536000000\) | \([2]\) | \(1536\) | \(0.46936\) | |
3840.bb2 | 3840z1 | \([0, 1, 0, -335, -2475]\) | \(8144865728/1125\) | \(576000\) | \([2]\) | \(768\) | \(0.12279\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3840.bb have rank \(0\).
Complex multiplication
The elliptic curves in class 3840.bb do not have complex multiplication.Modular form 3840.2.a.bb
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.