sage:E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 3840.t
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3840.t1 |
3840i2 |
[0,1,0,−61,155] |
778688/45 |
1474560 |
[2] |
512 |
−0.062445
|
|
3840.t2 |
3840i1 |
[0,1,0,−11,−15] |
314432/75 |
38400 |
[2] |
256 |
−0.40902
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 3840.t have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
5 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+17T2 |
1.17.a
|
19 |
1+19T2 |
1.19.a
|
23 |
1+23T2 |
1.23.a
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 3840.t do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.