Properties

Label 3840.t
Number of curves 22
Conductor 38403840
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Elliptic curves in class 3840.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3840.t1 3840i2 [0,1,0,61,155][0, 1, 0, -61, 155] 778688/45778688/45 14745601474560 [2][2] 512512 0.062445-0.062445  
3840.t2 3840i1 [0,1,0,11,15][0, 1, 0, -11, -15] 314432/75314432/75 3840038400 [2][2] 256256 0.40902-0.40902 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3840.t have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331T1 - T
551+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3840.t do not have complex multiplication.

Modular form 3840.2.a.t

Copy content sage:E.q_eigenform(10)
 
q+q3q5+2q7+q9+2q11+2q13q15+O(q20)q + q^{3} - q^{5} + 2 q^{7} + q^{9} + 2 q^{11} + 2 q^{13} - q^{15} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.