Properties

Label 3840.t
Number of curves $2$
Conductor $3840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 3840.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3840.t1 3840i2 \([0, 1, 0, -61, 155]\) \(778688/45\) \(1474560\) \([2]\) \(512\) \(-0.062445\)  
3840.t2 3840i1 \([0, 1, 0, -11, -15]\) \(314432/75\) \(38400\) \([2]\) \(256\) \(-0.40902\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3840.t have rank \(0\).

Complex multiplication

The elliptic curves in class 3840.t do not have complex multiplication.

Modular form 3840.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 2 q^{7} + q^{9} + 2 q^{11} + 2 q^{13} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.