Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 3888.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
3888.o1 | 3888l1 | \([0, 0, 0, 0, -36]\) | \(0\) | \(-559872\) | \([]\) | \(432\) | \(-0.21816\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
3888.o2 | 3888l2 | \([0, 0, 0, 0, 972]\) | \(0\) | \(-408146688\) | \([]\) | \(1296\) | \(0.33114\) | \(-3\) |
Rank
sage: E.rank()
The elliptic curves in class 3888.o have rank \(0\).
Complex multiplication
Each elliptic curve in class 3888.o has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 3888.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.