Properties

Label 388800hi
Number of curves 11
Conductor 388800388800
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hi1") E.isogeny_class()
 

Elliptic curves in class 388800hi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388800.hi1 388800hi1 [0,0,0,24300,425250][0, 0, 0, 24300, 425250] 995328/625995328/625 996451875000000-996451875000000 [][] 12441601244160 1.56701.5670 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 388800hi1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1313 1T+13T2 1 - T + 13 T^{2} 1.13.ab
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+7T+19T2 1 + 7 T + 19 T^{2} 1.19.h
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388800hi do not have complex multiplication.

Modular form 388800.2.a.hi

Copy content sage:E.q_eigenform(10)
 
q2q11+q132q177q19+O(q20)q - 2 q^{11} + q^{13} - 2 q^{17} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display