Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 389.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
389.a1 | 389a1 | \([0, 1, 1, -2, 0]\) | \(1404928/389\) | \(389\) | \([]\) | \(40\) | \(-0.79564\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 389.a1 has rank \(2\).
Complex multiplication
The elliptic curves in class 389.a do not have complex multiplication.Modular form 389.2.a.a
sage: E.q_eigenform(10)