Properties

Label 389844.bt
Number of curves $4$
Conductor $389844$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bt1")
 
E.isogeny_class()
 

Elliptic curves in class 389844.bt

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
389844.bt1 389844bt3 \([0, 0, 0, -2184420, -167743807]\) \(840033089536000/477272151837\) \(654940497990120228432\) \([2]\) \(9953280\) \(2.6841\)  
389844.bt2 389844bt1 \([0, 0, 0, -1390620, 631184141]\) \(216727177216000/2738853\) \(3758412764787408\) \([2]\) \(3317760\) \(2.1348\) \(\Gamma_0(N)\)-optimal
389844.bt3 389844bt2 \([0, 0, 0, -1353135, 666817382]\) \(-12479332642000/1526829993\) \(-33523273197073191168\) \([2]\) \(6635520\) \(2.4814\)  
389844.bt4 389844bt4 \([0, 0, 0, 8648745, -1335558994]\) \(3258571509326000/1920843121977\) \(-42174275487103268151552\) \([2]\) \(19906560\) \(3.0307\)  

Rank

sage: E.rank()
 

The elliptic curves in class 389844.bt have rank \(0\).

Complex multiplication

The elliptic curves in class 389844.bt do not have complex multiplication.

Modular form 389844.2.a.bt

sage: E.q_eigenform(10)
 
\(q - q^{13} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.