Properties

Label 391460.m
Number of curves $2$
Conductor $391460$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 391460.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
391460.m1 391460m2 \([0, 1, 0, -6359285, 6170368775]\) \(750484394082304/578125\) \(21909311572000000\) \([]\) \(5474304\) \(2.4433\)  
391460.m2 391460m1 \([0, 1, 0, -95925, 4404023]\) \(2575826944/1266325\) \(47990156067308800\) \([]\) \(1824768\) \(1.8940\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 391460.m have rank \(0\).

Complex multiplication

The elliptic curves in class 391460.m do not have complex multiplication.

Modular form 391460.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{7} - 2 q^{9} + 3 q^{11} - 4 q^{13} + q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.