Properties

Label 392.b
Number of curves 22
Conductor 392392
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 392.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
392.b1 392d2 [0,1,0,1976,32752][0, 1, 0, -1976, 32752] 3543122/493543122/49 1180631244811806312448 [2][2] 384384 0.738290.73829  
392.b2 392d1 [0,1,0,16,1392][0, 1, 0, -16, 1392] 4/7-4/7 843308032-843308032 [2][2] 192192 0.391710.39171 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 392.b have rank 00.

Complex multiplication

The elliptic curves in class 392.b do not have complex multiplication.

Modular form 392.2.a.b

sage: E.q_eigenform(10)
 
q2q3+4q5+q98q15+2q17+2q19+O(q20)q - 2 q^{3} + 4 q^{5} + q^{9} - 8 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.