Properties

Label 392d
Number of curves $2$
Conductor $392$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 392d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
392.b2 392d1 \([0, 1, 0, -16, 1392]\) \(-4/7\) \(-843308032\) \([2]\) \(192\) \(0.39171\) \(\Gamma_0(N)\)-optimal
392.b1 392d2 \([0, 1, 0, -1976, 32752]\) \(3543122/49\) \(11806312448\) \([2]\) \(384\) \(0.73829\)  

Rank

sage: E.rank()
 

The elliptic curves in class 392d have rank \(0\).

Complex multiplication

The elliptic curves in class 392d do not have complex multiplication.

Modular form 392.2.a.d

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + 4 q^{5} + q^{9} - 8 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.