sage:E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 393129.bl
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
393129.bl1 |
393129bl2 |
[0,0,1,−14938902,−22245892441] |
−884736 |
−416740825671930940851 |
[] |
14470400 |
2.8703
|
|
−19 |
393129.bl2 |
393129bl1 |
[0,0,1,−41382,3243314] |
−884736 |
−8858178799371 |
[] |
761600 |
1.3981
|
Γ0(N)-optimal |
−19 |
sage:E.rank()
The elliptic curves in class 393129.bl have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1 |
11 | 1 |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1+2T2 |
1.2.a
|
5 |
1−T+5T2 |
1.5.ab
|
7 |
1+3T+7T2 |
1.7.d
|
13 |
1+13T2 |
1.13.a
|
17 |
1+7T+17T2 |
1.17.h
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
Each elliptic curve in class 393129.bl has complex multiplication by an order in the imaginary quadratic field
Q(−19).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(119191)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.