Show commands:
SageMath
E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 393129.bl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
393129.bl1 | 393129bl2 | \([0, 0, 1, -14938902, -22245892441]\) | \(-884736\) | \(-416740825671930940851\) | \([]\) | \(14470400\) | \(2.8703\) | \(-19\) | |
393129.bl2 | 393129bl1 | \([0, 0, 1, -41382, 3243314]\) | \(-884736\) | \(-8858178799371\) | \([]\) | \(761600\) | \(1.3981\) | \(\Gamma_0(N)\)-optimal | \(-19\) |
Rank
sage: E.rank()
The elliptic curves in class 393129.bl have rank \(1\).
Complex multiplication
Each elliptic curve in class 393129.bl has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).Modular form 393129.2.a.bl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.