Properties

Label 393129.bl
Number of curves 22
Conductor 393129393129
CM Q(19)\Q(\sqrt{-19})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Elliptic curves in class 393129.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
393129.bl1 393129bl2 [0,0,1,14938902,22245892441][0, 0, 1, -14938902, -22245892441] 884736-884736 416740825671930940851-416740825671930940851 [][] 1447040014470400 2.87032.8703   19-19
393129.bl2 393129bl1 [0,0,1,41382,3243314][0, 0, 1, -41382, 3243314] 884736-884736 8858178799371-8858178799371 [][] 761600761600 1.39811.3981 Γ0(N)\Gamma_0(N)-optimal 19-19

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 393129.bl have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
3311
111111
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+2T2 1 + 2 T^{2} 1.2.a
55 1T+5T2 1 - T + 5 T^{2} 1.5.ab
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 1+7T+17T2 1 + 7 T + 17 T^{2} 1.17.h
2323 14T+23T2 1 - 4 T + 23 T^{2} 1.23.ae
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 393129.bl has complex multiplication by an order in the imaginary quadratic field Q(19)\Q(\sqrt{-19}) .

Modular form 393129.2.a.bl

Copy content sage:E.q_eigenform(10)
 
q2q4+q53q7+4q167q17+O(q20)q - 2 q^{4} + q^{5} - 3 q^{7} + 4 q^{16} - 7 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(119191)\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.