Properties

Label 393129.bl
Number of curves $2$
Conductor $393129$
CM \(\Q(\sqrt{-19}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bl1")
 
E.isogeny_class()
 

Elliptic curves in class 393129.bl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
393129.bl1 393129bl2 \([0, 0, 1, -14938902, -22245892441]\) \(-884736\) \(-416740825671930940851\) \([]\) \(14470400\) \(2.8703\)   \(-19\)
393129.bl2 393129bl1 \([0, 0, 1, -41382, 3243314]\) \(-884736\) \(-8858178799371\) \([]\) \(761600\) \(1.3981\) \(\Gamma_0(N)\)-optimal \(-19\)

Rank

sage: E.rank()
 

The elliptic curves in class 393129.bl have rank \(1\).

Complex multiplication

Each elliptic curve in class 393129.bl has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).

Modular form 393129.2.a.bl

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} - 3 q^{7} + 4 q^{16} - 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.