Show commands:
SageMath
E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 3960.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3960.s1 | 3960a1 | \([0, 0, 0, -267, -1674]\) | \(76136652/275\) | \(7603200\) | \([2]\) | \(1280\) | \(0.18145\) | \(\Gamma_0(N)\)-optimal |
3960.s2 | 3960a2 | \([0, 0, 0, -147, -3186]\) | \(-6353046/75625\) | \(-4181760000\) | \([2]\) | \(2560\) | \(0.52802\) |
Rank
sage: E.rank()
The elliptic curves in class 3960.s have rank \(0\).
Complex multiplication
The elliptic curves in class 3960.s do not have complex multiplication.Modular form 3960.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.