Properties

Label 3960.s
Number of curves $2$
Conductor $3960$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 3960.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3960.s1 3960a1 \([0, 0, 0, -267, -1674]\) \(76136652/275\) \(7603200\) \([2]\) \(1280\) \(0.18145\) \(\Gamma_0(N)\)-optimal
3960.s2 3960a2 \([0, 0, 0, -147, -3186]\) \(-6353046/75625\) \(-4181760000\) \([2]\) \(2560\) \(0.52802\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3960.s have rank \(0\).

Complex multiplication

The elliptic curves in class 3960.s do not have complex multiplication.

Modular form 3960.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{7} - q^{11} - 4 q^{13} - 2 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.