Properties

Label 396900.e1
Conductor 396900396900
Discriminant 177811200177811200
j-invariant 136878750000 136878750000
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x360375x5709970y^2=x^3-60375x-5709970 Copy content Toggle raw display (homogenize, simplify)
y2z=x360375xz25709970z3y^2z=x^3-60375xz^2-5709970z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x360375x5709970y^2=x^3-60375x-5709970 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -60375, -5709970])
 
gp: E = ellinit([0, 0, 0, -60375, -5709970])
 
magma: E := EllipticCurve([0, 0, 0, -60375, -5709970]);
 
oscar: E = elliptic_curve([0, 0, 0, -60375, -5709970])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(9079/64,91/512)(-9079/64, 91/512)4.21509957667892862305519737104.2150995766789286230551973710\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  396900 396900  = 223452722^{2} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  177811200177811200 = 283452732^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  136878750000 136878750000  = 2432572332^{4} \cdot 3^{2} \cdot 5^{7} \cdot 23^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.17882145515994474326797966471.1788214551599447432679796647
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.40419795077223374885172156998-0.40419795077223374885172156998
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.15839067099878371.1583906709987837
Szpiro ratio: σm\sigma_{m} ≈ 3.4626539359760253.462653935976025

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.21509957667892862305519737104.2150995766789286230551973710
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.304568699530352384546000252180.30456869953035238454600025218
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 3112 3\cdot1\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.70272437876024085816973338877.7027243787602408581697333887
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.702724379L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3045694.2151006127.702724379\displaystyle 7.702724379 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.304569 \cdot 4.215100 \cdot 6}{1^2} \approx 7.702724379

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 396900.2.a.e

q6q11+5q19+O(q20) q - 6 q^{11} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 677376
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV^{*} additive -1 2 8 0
33 11 IIII additive 1 4 4 0
55 11 IIII additive 1 2 2 0
77 22 IIIIII additive -1 2 3 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5Nn 25.50.2.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[271, 510, 255, 631], [59, 30, 340, 339], [1, 0, 400, 1], [101, 0, 0, 201], [1, 350, 0, 1], [435, 142, 442, 339], [161, 30, 290, 141], [301, 300, 400, 301], [601, 670, 680, 1], [63, 73, 513, 402], [1, 0, 350, 1], [351, 350, 350, 351], [408, 205, 471, 182], [526, 25, 325, 251]]
 
GL(2,Integers(700)).subgroup(gens)
 
Gens := [[271, 510, 255, 631], [59, 30, 340, 339], [1, 0, 400, 1], [101, 0, 0, 201], [1, 350, 0, 1], [435, 142, 442, 339], [161, 30, 290, 141], [301, 300, 400, 301], [601, 670, 680, 1], [63, 73, 513, 402], [1, 0, 350, 1], [351, 350, 350, 351], [408, 205, 471, 182], [526, 25, 325, 251]];
 
sub<GL(2,Integers(700))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7 , index 200200, genus 99, and generators

(271510255631),(5930340339),(104001),(10100201),(135001),(435142442339),(16130290141),(301300400301),(6016706801),(6373513402),(103501),(351350350351),(408205471182),(52625325251)\left(\begin{array}{rr} 271 & 510 \\ 255 & 631 \end{array}\right),\left(\begin{array}{rr} 59 & 30 \\ 340 & 339 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 400 & 1 \end{array}\right),\left(\begin{array}{rr} 101 & 0 \\ 0 & 201 \end{array}\right),\left(\begin{array}{rr} 1 & 350 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 435 & 142 \\ 442 & 339 \end{array}\right),\left(\begin{array}{rr} 161 & 30 \\ 290 & 141 \end{array}\right),\left(\begin{array}{rr} 301 & 300 \\ 400 & 301 \end{array}\right),\left(\begin{array}{rr} 601 & 670 \\ 680 & 1 \end{array}\right),\left(\begin{array}{rr} 63 & 73 \\ 513 & 402 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 350 & 1 \end{array}\right),\left(\begin{array}{rr} 351 & 350 \\ 350 & 351 \end{array}\right),\left(\begin{array}{rr} 408 & 205 \\ 471 & 182 \end{array}\right),\left(\begin{array}{rr} 526 & 25 \\ 325 & 251 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[700])K:=\Q(E[700]) is a degree-290304000290304000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/700Z)\GL_2(\Z/700\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 14175=34527 14175 = 3^{4} \cdot 5^{2} \cdot 7
33 additive 88 4900=225272 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2}
55 additive 1010 15876=223472 15876 = 2^{2} \cdot 3^{4} \cdot 7^{2}
77 additive 2020 8100=223452 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 396900.e consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.56700.1 Z/2Z\Z/2\Z not in database
66 6.6.90016920000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.