sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 4002.a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
4002.a1 |
4002c2 |
[1,1,0,−3711,85485] |
5654307459987577/368184 |
368184 |
[2] |
2688 |
0.52612
|
|
4002.a2 |
4002c1 |
[1,1,0,−231,1269] |
−1372441819897/11141568 |
−11141568 |
[2] |
1344 |
0.17955
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 4002.a have
rank 2.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
23 | 1−T |
29 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+2T+19T2 |
1.19.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 4002.a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.