Properties

Label 4032.bm
Number of curves $2$
Conductor $4032$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bm1")
 
E.isogeny_class()
 

Elliptic curves in class 4032.bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4032.bm1 4032j2 \([0, 0, 0, -1308, 18160]\) \(20720464/63\) \(752467968\) \([2]\) \(3072\) \(0.57189\)  
4032.bm2 4032j1 \([0, 0, 0, -48, 520]\) \(-16384/147\) \(-109734912\) \([2]\) \(1536\) \(0.22532\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4032.bm have rank \(0\).

Complex multiplication

The elliptic curves in class 4032.bm do not have complex multiplication.

Modular form 4032.2.a.bm

sage: E.q_eigenform(10)
 
\(q + 4 q^{5} - q^{7} + 2 q^{11} + 6 q^{13} + 4 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.