Show commands:
SageMath
E = EllipticCurve("bm1")
E.isogeny_class()
Elliptic curves in class 4032.bm
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4032.bm1 | 4032j2 | \([0, 0, 0, -1308, 18160]\) | \(20720464/63\) | \(752467968\) | \([2]\) | \(3072\) | \(0.57189\) | |
4032.bm2 | 4032j1 | \([0, 0, 0, -48, 520]\) | \(-16384/147\) | \(-109734912\) | \([2]\) | \(1536\) | \(0.22532\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4032.bm have rank \(0\).
Complex multiplication
The elliptic curves in class 4032.bm do not have complex multiplication.Modular form 4032.2.a.bm
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.