Properties

Label 4032.bm
Number of curves 22
Conductor 40324032
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bm1")
 
E.isogeny_class()
 

Elliptic curves in class 4032.bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4032.bm1 4032j2 [0,0,0,1308,18160][0, 0, 0, -1308, 18160] 20720464/6320720464/63 752467968752467968 [2][2] 30723072 0.571890.57189  
4032.bm2 4032j1 [0,0,0,48,520][0, 0, 0, -48, 520] 16384/147-16384/147 109734912-109734912 [2][2] 15361536 0.225320.22532 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4032.bm have rank 00.

Complex multiplication

The elliptic curves in class 4032.bm do not have complex multiplication.

Modular form 4032.2.a.bm

sage: E.q_eigenform(10)
 
q+4q5q7+2q11+6q13+4q17+4q19+O(q20)q + 4 q^{5} - q^{7} + 2 q^{11} + 6 q^{13} + 4 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.