Properties

Label 4032.j
Number of curves 22
Conductor 40324032
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 4032.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4032.j1 4032d1 [0,0,0,216,1080][0, 0, 0, -216, -1080] 55296/755296/7 141087744141087744 [2][2] 15361536 0.292960.29296 Γ0(N)\Gamma_0(N)-optimal
4032.j2 4032d2 [0,0,0,324,5616][0, 0, 0, 324, -5616] 11664/4911664/49 15801827328-15801827328 [2][2] 30723072 0.639530.63953  

Rank

sage: E.rank()
 

The elliptic curves in class 4032.j have rank 00.

Complex multiplication

The elliptic curves in class 4032.j do not have complex multiplication.

Modular form 4032.2.a.j

sage: E.q_eigenform(10)
 
q2q5+q76q11+6q132q174q19+O(q20)q - 2 q^{5} + q^{7} - 6 q^{11} + 6 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.