sage:E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 4032.j
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
4032.j1 |
4032d1 |
[0,0,0,−216,−1080] |
55296/7 |
141087744 |
[2] |
1536 |
0.29296
|
Γ0(N)-optimal |
4032.j2 |
4032d2 |
[0,0,0,324,−5616] |
11664/49 |
−15801827328 |
[2] |
3072 |
0.63953
|
|
sage:E.rank()
The elliptic curves in class 4032.j have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
7 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
11 |
1+6T+11T2 |
1.11.g
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−2T+23T2 |
1.23.ac
|
29 |
1+8T+29T2 |
1.29.i
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 4032.j do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.