Properties

Label 40344g5
Conductor 4034440344
Discriminant 6.383×1016-6.383\times 10^{16}
j-invariant 2076466561 \frac{207646}{6561}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+26336x12034528y^2=x^3+x^2+26336x-12034528 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+26336xz212034528z3y^2z=x^3+x^2z+26336xz^2-12034528z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+2133189x8779570506y^2=x^3+2133189x-8779570506 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 26336, -12034528])
 
gp: E = ellinit([0, 1, 0, 26336, -12034528])
 
magma: E := EllipticCurve([0, 1, 0, 26336, -12034528]);
 
oscar: E = elliptic_curve([0, 1, 0, 26336, -12034528])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1789/4,75645/8)(1789/4, 75645/8)4.08242782325132739529878962914.0824278232513273952987896291\infty
(191,0)(191, 0)0022

Integral points

(191,0) \left(191, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  40344 40344  = 2334122^{3} \cdot 3 \cdot 41^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  63826808678811648-63826808678811648 = 121138416-1 \cdot 2^{11} \cdot 3^{8} \cdot 41^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2076466561 \frac{207646}{6561}  = 2384732 \cdot 3^{-8} \cdot 47^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.90458092783224193869160313111.9045809278322419386916031311
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.58759002103319516354090800009-0.58759002103319516354090800009
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.15979914108682311.1597991410868231
Szpiro ratio: σm\sigma_{m} ≈ 4.3498654983541684.349865498354168

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.08242782325132739529878962914.0824278232513273952987896291
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.168395580620831207501243732030.16839558062083120750124373203
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 12322 1\cdot2^{3}\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.49970242911234686037619649565.4997024291123468603761964956
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.499702429L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1683964.08242832225.499702429\displaystyle 5.499702429 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.168396 \cdot 4.082428 \cdot 32}{2^2} \approx 5.499702429

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   40344.2.a.c

q+q32q5+q94q11+2q132q152q17+4q19+O(q20) q + q^{3} - 2 q^{5} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 276480
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII^{*} additive -1 3 11 0
33 88 I8I_{8} split multiplicative -1 1 8 8
4141 44 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.48.0.218

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1436, 41, 123, 698], [1, 16, 0, 1], [1953, 16, 1952, 17], [15, 2, 1870, 1955], [527, 0, 0, 1967], [1313, 1312, 328, 657], [1846, 1189, 1353, 370], [1, 0, 16, 1], [5, 4, 1964, 1965]]
 
GL(2,Integers(1968)).subgroup(gens)
 
Gens := [[1436, 41, 123, 698], [1, 16, 0, 1], [1953, 16, 1952, 17], [15, 2, 1870, 1955], [527, 0, 0, 1967], [1313, 1312, 328, 657], [1846, 1189, 1353, 370], [1, 0, 16, 1], [5, 4, 1964, 1965]];
 
sub<GL(2,Integers(1968))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1968=24341 1968 = 2^{4} \cdot 3 \cdot 41 , index 192192, genus 11, and generators

(143641123698),(11601),(195316195217),(15218701955),(527001967),(13131312328657),(184611891353370),(10161),(5419641965)\left(\begin{array}{rr} 1436 & 41 \\ 123 & 698 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1953 & 16 \\ 1952 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 1870 & 1955 \end{array}\right),\left(\begin{array}{rr} 527 & 0 \\ 0 & 1967 \end{array}\right),\left(\begin{array}{rr} 1313 & 1312 \\ 328 & 657 \end{array}\right),\left(\begin{array}{rr} 1846 & 1189 \\ 1353 & 370 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1964 & 1965 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1968])K:=\Q(E[1968]) is a degree-1692794880016927948800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1968Z)\GL_2(\Z/1968\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 1681=412 1681 = 41^{2}
33 split multiplicative 44 13448=23412 13448 = 2^{3} \cdot 41^{2}
4141 additive 842842 24=233 24 = 2^{3} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 40344g consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 24a6, its twist by 4141.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{-2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(82)\Q(\sqrt{82}) Z/4Z\Z/4\Z not in database
22 Q(41)\Q(\sqrt{-41}) Z/8Z\Z/8\Z not in database
44 Q(2,41)\Q(\sqrt{-2}, \sqrt{-41}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.11852100665344.22 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.11852100665344.8 Z/8Z\Z/8\Z not in database
88 8.0.60001259618304.17 Z/16Z\Z/16\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split ord ss ord ord ord ord ord ord ord ord add ord ss
λ\lambda-invariant(s) - 2 1 3,1 1 1 1 1 1 1 1 1 - 1 1,1
μ\mu-invariant(s) - 0 0 0,0 0 0 0 0 0 0 0 0 - 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.