y2+xy+y=x3−x2−2027x+35776
|
(homogenize, simplify) |
y2z+xyz+yz2=x3−x2z−2027xz2+35776z3
|
(dehomogenize, simplify) |
y2=x3−32427x+2257254
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, -1, 1, -2027, 35776])
gp:E = ellinit([1, -1, 1, -2027, 35776])
magma:E := EllipticCurve([1, -1, 1, -2027, 35776]);
oscar:E = elliptic_curve([1, -1, 1, -2027, 35776])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z
magma:MordellWeilGroup(E);
P | h^(P) | Order |
(76,524) | 0.043718464769708359029862235393 | ∞ |
(−49,149), (−49,−101), (−14,254), (−14,−241), (4,164), (4,−169), (26,−1), (26,−26), (31,29), (31,−61), (76,524), (76,−601)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
Conductor: |
N |
= |
405 | = | 34⋅5 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
Discriminant: |
Δ |
= |
−4613203125 | = | −1⋅310⋅57 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
j-invariant: |
j |
= |
−7812515590912409 | = | −1⋅32⋅5−7⋅12013 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 0.70167136058330600768411451754 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | −0.21383887997345206847858984656 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 1.0070302306950922 |
|
Szpiro ratio: |
σm | ≈ | 5.740397539484409 |
|
Analytic rank: |
ran | = | 1
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
Mordell-Weil rank: |
r | = | 1
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
Regulator: |
Reg(E/Q) | ≈ | 0.043718464769708359029862235393 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
Real period: |
Ω | ≈ | 1.3820485347634765158428338742 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 21
= 3⋅7
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 1 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
Special value: |
L′(E,1) | ≈ | 1.2688418437187662336679690472 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
1.268841844≈L′(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅1.382049⋅0.043718⋅21≈1.268841844
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 1, -2027, 35776]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 1, -2027, 35776]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
405.2.a.b
q−q2−q4+q5−3q7+3q8−q10+2q11−2q13+3q14−q16−4q17−8q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 2 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[1016, 7, 1001, 1254], [8, 7, 623, 1254], [8, 5, 91, 57], [633, 1088, 1246, 953], [1247, 14, 1246, 15], [1, 14, 0, 1], [1, 0, 14, 1], [1251, 1250, 182, 1151]]
GL(2,Integers(1260)).subgroup(gens)
magma:Gens := [[1016, 7, 1001, 1254], [8, 7, 623, 1254], [8, 5, 91, 57], [633, 1088, 1246, 953], [1247, 14, 1246, 15], [1, 14, 0, 1], [1, 0, 14, 1], [1251, 1250, 182, 1151]];
sub<GL(2,Integers(1260))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 1260=22⋅32⋅5⋅7, index 96, genus 2, and generators
(1016100171254),(862371254),(891557),(63312461088953),(124712461415),(10141),(11401),(125118212501151).
The torsion field K:=Q(E[1260]) is a degree-3762339840 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/1260Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
7.
Its isogeny class 405.b
consists of 2 curves linked by isogenies of
degree 7.
This elliptic curve is its own minimal quadratic twist.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.