Properties

Label 406.a
Number of curves $2$
Conductor $406$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 406.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
406.a1 406a2 \([1, -1, 0, -4942, 134964]\) \(13350003080765625/109178272\) \(109178272\) \([2]\) \(240\) \(0.71309\)  
406.a2 406a1 \([1, -1, 0, -302, 2260]\) \(-3051779837625/295386112\) \(-295386112\) \([2]\) \(120\) \(0.36651\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 406.a have rank \(1\).

Complex multiplication

The elliptic curves in class 406.a do not have complex multiplication.

Modular form 406.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} - 3 q^{9} - 4 q^{11} + q^{14} + q^{16} - 4 q^{17} + 3 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.