Properties

Label 406.a
Number of curves 22
Conductor 406406
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 406.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
406.a1 406a2 [1,1,0,4942,134964][1, -1, 0, -4942, 134964] 13350003080765625/10917827213350003080765625/109178272 109178272109178272 [2][2] 240240 0.713090.71309  
406.a2 406a1 [1,1,0,302,2260][1, -1, 0, -302, 2260] 3051779837625/295386112-3051779837625/295386112 295386112-295386112 [2][2] 120120 0.366510.36651 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 406.a have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
771+T1 + T
29291+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T2 1 + 3 T^{2} 1.3.a
55 1+5T2 1 + 5 T^{2} 1.5.a
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 1+4T+17T2 1 + 4 T + 17 T^{2} 1.17.e
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 406.a do not have complex multiplication.

Modular form 406.2.a.a

Copy content sage:E.q_eigenform(10)
 
qq2+q4q7q83q94q11+q14+q164q17+3q18+4q19+O(q20)q - q^{2} + q^{4} - q^{7} - q^{8} - 3 q^{9} - 4 q^{11} + q^{14} + q^{16} - 4 q^{17} + 3 q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.