Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 406.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
406.a1 | 406a2 | \([1, -1, 0, -4942, 134964]\) | \(13350003080765625/109178272\) | \(109178272\) | \([2]\) | \(240\) | \(0.71309\) | |
406.a2 | 406a1 | \([1, -1, 0, -302, 2260]\) | \(-3051779837625/295386112\) | \(-295386112\) | \([2]\) | \(120\) | \(0.36651\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 406.a have rank \(1\).
Complex multiplication
The elliptic curves in class 406.a do not have complex multiplication.Modular form 406.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.