sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 406.a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
406.a1 |
406a2 |
[1,−1,0,−4942,134964] |
13350003080765625/109178272 |
109178272 |
[2] |
240 |
0.71309
|
|
406.a2 |
406a1 |
[1,−1,0,−302,2260] |
−3051779837625/295386112 |
−295386112 |
[2] |
120 |
0.36651
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 406.a have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
7 | 1+T |
29 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
5 |
1+5T2 |
1.5.a
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+13T2 |
1.13.a
|
17 |
1+4T+17T2 |
1.17.e
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+23T2 |
1.23.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 406.a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.