Properties

Label 4080.s
Number of curves 22
Conductor 40804080
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 4080.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.s1 4080ba2 [0,1,0,739096,244794220][0, 1, 0, -739096, -244794220] 10901014250685308569/104077405440010901014250685308569/1040774054400 42630105268224004263010526822400 [2][2] 4838448384 2.03572.0357  
4080.s2 4080ba1 [0,1,0,42776,4424556][0, 1, 0, -42776, -4424556] 2113364608155289/828431400960-2113364608155289/828431400960 3393255018332160-3393255018332160 [2][2] 2419224192 1.68921.6892 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4080.s have rank 00.

Complex multiplication

The elliptic curves in class 4080.s do not have complex multiplication.

Modular form 4080.2.a.s

sage: E.q_eigenform(10)
 
q+q3q52q7+q9+4q11+4q13q15+q17+4q19+O(q20)q + q^{3} - q^{5} - 2 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} - q^{15} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.