Properties

Label 4080.y
Number of curves 11
Conductor 40804080
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Elliptic curves in class 4080.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.y1 4080bf1 [0,1,0,30,45][0, 1, 0, 30, -45] 180472064/185895180472064/185895 2974320-2974320 [][] 672672 0.071069-0.071069 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 4080.y1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331T1 - T
551T1 - T
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1919 1+T+19T2 1 + T + 19 T^{2} 1.19.b
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 17T+29T2 1 - 7 T + 29 T^{2} 1.29.ah
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4080.y do not have complex multiplication.

Modular form 4080.2.a.y

Copy content sage:E.q_eigenform(10)
 
q+q3+q53q7+q9q112q13+q15+q17q19+O(q20)q + q^{3} + q^{5} - 3 q^{7} + q^{9} - q^{11} - 2 q^{13} + q^{15} + q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display