Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 4080i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4080.k2 | 4080i1 | \([0, -1, 0, 80, 400]\) | \(54607676/108375\) | \(-110976000\) | \([2]\) | \(1152\) | \(0.22822\) | \(\Gamma_0(N)\)-optimal |
4080.k1 | 4080i2 | \([0, -1, 0, -600, 4752]\) | \(11683450802/2390625\) | \(4896000000\) | \([2]\) | \(2304\) | \(0.57479\) |
Rank
sage: E.rank()
The elliptic curves in class 4080i have rank \(1\).
Complex multiplication
The elliptic curves in class 4080i do not have complex multiplication.Modular form 4080.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.