Properties

Label 4080l
Number of curves 44
Conductor 40804080
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 4080l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.u3 4080l1 [0,1,0,951,9576][0, 1, 0, -951, -9576] 5951163357184/11293121255951163357184/1129312125 1806899400018068994000 [2][2] 34563456 0.685690.68569 Γ0(N)\Gamma_0(N)-optimal
4080.u2 4080l2 [0,1,0,4596,109980][0, 1, 0, -4596, 109980] 41948679809104/329189062541948679809104/3291890625 842724000000842724000000 [2,2][2, 2] 69126912 1.03231.0323  
4080.u1 4080l3 [0,1,0,72096,7426980][0, 1, 0, -72096, 7426980] 40472803590982276/28188337540472803590982276/281883375 288648576000288648576000 [2][2] 1382413824 1.37881.3788  
4080.u4 4080l4 [0,1,0,4584,502884][0, 1, 0, 4584, 502884] 10400706415004/11206054687510400706415004/112060546875 114750000000000-114750000000000 [2][2] 1382413824 1.37881.3788  

Rank

sage: E.rank()
 

The elliptic curves in class 4080l have rank 00.

Complex multiplication

The elliptic curves in class 4080l do not have complex multiplication.

Modular form 4080.2.a.l

sage: E.q_eigenform(10)
 
q+q3q5+q9+4q11+6q13q15q174q19+O(q20)q + q^{3} - q^{5} + q^{9} + 4 q^{11} + 6 q^{13} - q^{15} - q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.