Properties

Label 4080l
Number of curves $4$
Conductor $4080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 4080l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.u3 4080l1 \([0, 1, 0, -951, -9576]\) \(5951163357184/1129312125\) \(18068994000\) \([2]\) \(3456\) \(0.68569\) \(\Gamma_0(N)\)-optimal
4080.u2 4080l2 \([0, 1, 0, -4596, 109980]\) \(41948679809104/3291890625\) \(842724000000\) \([2, 2]\) \(6912\) \(1.0323\)  
4080.u1 4080l3 \([0, 1, 0, -72096, 7426980]\) \(40472803590982276/281883375\) \(288648576000\) \([2]\) \(13824\) \(1.3788\)  
4080.u4 4080l4 \([0, 1, 0, 4584, 502884]\) \(10400706415004/112060546875\) \(-114750000000000\) \([2]\) \(13824\) \(1.3788\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4080l have rank \(0\).

Complex multiplication

The elliptic curves in class 4080l do not have complex multiplication.

Modular form 4080.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} + 4 q^{11} + 6 q^{13} - q^{15} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.