E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 4080l
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
4080.u3 |
4080l1 |
[0,1,0,−951,−9576] |
5951163357184/1129312125 |
18068994000 |
[2] |
3456 |
0.68569
|
Γ0(N)-optimal |
4080.u2 |
4080l2 |
[0,1,0,−4596,109980] |
41948679809104/3291890625 |
842724000000 |
[2,2] |
6912 |
1.0323
|
|
4080.u1 |
4080l3 |
[0,1,0,−72096,7426980] |
40472803590982276/281883375 |
288648576000 |
[2] |
13824 |
1.3788
|
|
4080.u4 |
4080l4 |
[0,1,0,4584,502884] |
10400706415004/112060546875 |
−114750000000000 |
[2] |
13824 |
1.3788
|
|
The elliptic curves in class 4080l have
rank 0.
The elliptic curves in class 4080l do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.