Properties

Label 4080z1
Conductor 40804080
Discriminant 5752995840-5752995840
j-invariant 3021117111404540 \frac{302111711}{1404540}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+224x3340y^2=x^3+x^2+224x-3340 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+224xz23340z3y^2z=x^3+x^2z+224xz^2-3340z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+18117x2489238y^2=x^3+18117x-2489238 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 224, -3340])
 
gp: E = ellinit([0, 1, 0, 224, -3340])
 
magma: E := EllipticCurve([0, 1, 0, 224, -3340]);
 
oscar: E = elliptic_curve([0, 1, 0, 224, -3340])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(26,144)(26, 144)0.576433403708806152591868275010.57643340370880615259186827501\infty
(10,0)(10, 0)0022

Integral points

(10,0) \left(10, 0\right) , (11,±24)(11,\pm 24), (26,±144)(26,\pm 144), (44,±306)(44,\pm 306), (554,±13056)(554,\pm 13056) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  4080 4080  = 2435172^{4} \cdot 3 \cdot 5 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  5752995840-5752995840 = 1214355172-1 \cdot 2^{14} \cdot 3^{5} \cdot 5 \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  3021117111404540 \frac{302111711}{1404540}  = 2235511131726132^{-2} \cdot 3^{-5} \cdot 5^{-1} \cdot 11^{3} \cdot 17^{-2} \cdot 61^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.555124633042513449265438815170.55512463304251344926543881517
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.13802254751743186015179330629-0.13802254751743186015179330629
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92028924595492170.9202892459549217
Szpiro ratio: σm\sigma_{m} ≈ 3.58375052987730363.5837505298773036

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.576433403708806152591868275010.57643340370880615259186827501
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.680697747361760580635346871550.68069774736176058063534687155
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 40 40  = 22512 2^{2}\cdot5\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.92376919408656674952329969893.9237691940865667495232996989
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.923769194L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6806980.57643340223.923769194\displaystyle 3.923769194 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.680698 \cdot 0.576433 \cdot 40}{2^2} \approx 3.923769194

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   4080.2.a.r

q+q3q52q7+q9+4q13q15q174q19+O(q20) q + q^{3} - q^{5} - 2 q^{7} + q^{9} + 4 q^{13} - q^{15} - q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1920
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I6I_{6}^{*} additive -1 4 14 2
33 55 I5I_{5} split multiplicative -1 1 5 5
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [257, 1786, 1784, 255], [1, 4, 0, 1], [1021, 4, 2, 9], [241, 4, 482, 9], [682, 1, 679, 0], [1, 0, 4, 1], [2037, 4, 2036, 5], [3, 4, 8, 11], [1634, 1, 1223, 0]]
 
GL(2,Integers(2040)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [257, 1786, 1784, 255], [1, 4, 0, 1], [1021, 4, 2, 9], [241, 4, 482, 9], [682, 1, 679, 0], [1, 0, 4, 1], [2037, 4, 2036, 5], [3, 4, 8, 11], [1634, 1, 1223, 0]];
 
sub<GL(2,Integers(2040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 , index 1212, genus 00, and generators

(1225),(25717861784255),(1401),(1021429),(24144829),(68216790),(1041),(2037420365),(34811),(1634112230)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 257 & 1786 \\ 1784 & 255 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1021 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 241 & 4 \\ 482 & 9 \end{array}\right),\left(\begin{array}{rr} 682 & 1 \\ 679 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2037 & 4 \\ 2036 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1634 & 1 \\ 1223 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2040])K:=\Q(E[2040]) is a degree-231022264320231022264320 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2040Z)\GL_2(\Z/2040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 15=35 15 = 3 \cdot 5
33 split multiplicative 44 1360=24517 1360 = 2^{4} \cdot 5 \cdot 17
55 nonsplit multiplicative 66 272=2417 272 = 2^{4} \cdot 17
1717 nonsplit multiplicative 1818 240=2435 240 = 2^{4} \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 4080z consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 510c1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.1109760.2 Z/4Z\Z/4\Z not in database
88 8.0.842724000000.9 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.277102632960000.1 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split nonsplit ord ss ord nonsplit ord ord ord ss ord ord ord ord
λ\lambda-invariant(s) - 2 1 5 1,1 3 1 1 1 1 1,1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0,0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.