Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 4140.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4140.e1 | 4140k1 | \([0, 0, 0, 6902448, -3048337996]\) | \(194879272239195815936/134287459716796875\) | \(-25061262882187500000000\) | \([]\) | \(349440\) | \(2.9866\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 4140.e1 has rank \(1\).
Complex multiplication
The elliptic curves in class 4140.e do not have complex multiplication.Modular form 4140.2.a.e
sage: E.q_eigenform(10)