Properties

Label 41971a3
Conductor 4197141971
Discriminant 204805091251-204805091251
j-invariant 5035787105075219 -\frac{50357871050752}{19}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x21699457x+852167382y^2+y=x^3+x^2-1699457x+852167382 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z1699457xz2+852167382z3y^2z+yz^2=x^3+x^2z-1699457xz^2+852167382z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32202496704x+39785151344976y^2=x^3-2202496704x+39785151344976 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -1699457, 852167382])
 
gp: E = ellinit([0, 1, 1, -1699457, 852167382])
 
magma: E := EllipticCurve([0, 1, 1, -1699457, 852167382]);
 
oscar: E = elliptic_curve([0, 1, 1, -1699457, 852167382])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  41971 41971  = 1947219 \cdot 47^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  204805091251-204805091251 = 119476-1 \cdot 19 \cdot 47^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  5035787105075219 -\frac{50357871050752}{19}  = 12181915773-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.95851295784634709693057021851.9585129578463470969305702185
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0334391569913178035200948836130.033439156991317803520094883613
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.1049470994824951.104947099482495
Szpiro ratio: σm\sigma_{m} ≈ 5.13409360187855955.1340936018785595

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.601998296628860588249504978030.60199829662886058824950497803
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.601998296628860588249504978030.60199829662886058824950497803
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.601998297L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6019981.0000001120.601998297\displaystyle 0.601998297 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.601998 \cdot 1.000000 \cdot 1}{1^2} \approx 0.601998297

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   41971.2.a.a

q2q32q43q5q7+q93q11+4q12+4q13+6q15+4q163q17q19+O(q20) q - 2 q^{3} - 2 q^{4} - 3 q^{5} - q^{7} + q^{9} - 3 q^{11} + 4 q^{12} + 4 q^{13} + 6 q^{15} + 4 q^{16} - 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 316710
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1
4747 11 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 27.36.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[24535, 27777, 2679, 29846], [1, 54, 0, 1], [31, 36, 42400, 41461], [48169, 54, 48168, 55], [1, 0, 54, 1], [24623, 0, 0, 48221], [39058, 35955, 7567, 6628], [28, 27, 729, 703]]
 
GL(2,Integers(48222)).subgroup(gens)
 
Gens := [[24535, 27777, 2679, 29846], [1, 54, 0, 1], [31, 36, 42400, 41461], [48169, 54, 48168, 55], [1, 0, 54, 1], [24623, 0, 0, 48221], [39058, 35955, 7567, 6628], [28, 27, 729, 703]];
 
sub<GL(2,Integers(48222))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 48222=2331947 48222 = 2 \cdot 3^{3} \cdot 19 \cdot 47 , index 12961296, genus 4343, and generators

(2453527777267929846),(15401),(31364240041461),(48169544816855),(10541),(246230048221),(390583595575676628),(2827729703)\left(\begin{array}{rr} 24535 & 27777 \\ 2679 & 29846 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 42400 & 41461 \end{array}\right),\left(\begin{array}{rr} 48169 & 54 \\ 48168 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 24623 & 0 \\ 0 & 48221 \end{array}\right),\left(\begin{array}{rr} 39058 & 35955 \\ 7567 & 6628 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[48222])K:=\Q(E[48222]) is a degree-856921204316160856921204316160 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/48222Z)\GL_2(\Z/48222\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
1919 nonsplit multiplicative 2020 2209=472 2209 = 47^{2}
4747 additive 11061106 19 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 41971a consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 19a2, its twist by 47-47.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(141)\Q(\sqrt{141}) Z/3Z\Z/3\Z not in database
33 3.1.76.1 Z/2Z\Z/2\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.121772854647.1 Z/3Z\Z/3\Z not in database
66 6.6.266317233112989.2 Z/9Z\Z/9\Z not in database
66 6.2.16191404496.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.544232078122160854287801.1 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.2670045185509920023558244423689774297088.1 Z/6Z\Z/6\Z not in database
1818 18.6.27929615708403421106701317514400219646891534372864.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord ord ord ord ord ord nonsplit ss ord ord ord ord ord add
λ\lambda-invariant(s) 0,3 4 0 0 0 0 0 0 0,0 0 0 0 0 2 -
μ\mu-invariant(s) 0,0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 -

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.