Properties

Label 42135f1
Conductor 4213542135
Discriminant 332465416935-332465416935
j-invariant 115 -\frac{1}{15}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x359x+27737y^2+xy+y=x^3-59x+27737 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x359xz2+27737z3y^2z+xyz+yz^2=x^3-59xz^2+27737z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x375843x+1294336638y^2=x^3-75843x+1294336638 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -59, 27737])
 
gp: E = ellinit([1, 0, 1, -59, 27737])
 
magma: E := EllipticCurve([1, 0, 1, -59, 27737]);
 
oscar: E = elliptic_curve([1, 0, 1, -59, 27737])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(31,15)(-31, 15)0022

Integral points

(31,15) \left(-31, 15\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  42135 42135  = 355323 \cdot 5 \cdot 53^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  332465416935-332465416935 = 135536-1 \cdot 3 \cdot 5 \cdot 53^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  115 -\frac{1}{15}  = 13151-1 \cdot 3^{-1} \cdot 5^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.889721204133271820211405950890.88972120413327182021140595089
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0954247526427890968608286186-1.0954247526427890968608286186
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.19807684405159481.1980768440515948
Szpiro ratio: σm\sigma_{m} ≈ 3.19144785343004863.1914478534300486

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.769550495052223121508241904230.76955049505222312150824190423
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 1122 1\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.769550495052223121508241904230.76955049505222312150824190423
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.769550495L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7695501.0000004220.769550495\displaystyle 0.769550495 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.769550 \cdot 1.000000 \cdot 4}{2^2} \approx 0.769550495

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   42135.2.a.k

q+q2+q3q4q5+q63q8+q9q104q11q122q13q15q16+2q17+q184q19+O(q20) q + q^{2} + q^{3} - q^{4} - q^{5} + q^{6} - 3 q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} - 2 q^{13} - q^{15} - q^{16} + 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 36608
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 11 I1I_{1} split multiplicative -1 1 1 1
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
5353 44 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 32.48.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 32, 1], [1, 32, 0, 1], [5, 28, 68, 381], [1, 3392, 11130, 20671], [4983, 8162, 17914, 2863], [16799, 0, 0, 25439], [25409, 32, 25408, 33], [20512, 3869, 16907, 8322], [23, 18, 22878, 23435], [17014, 24963, 1325, 8428]]
 
GL(2,Integers(25440)).subgroup(gens)
 
Gens := [[1, 0, 32, 1], [1, 32, 0, 1], [5, 28, 68, 381], [1, 3392, 11130, 20671], [4983, 8162, 17914, 2863], [16799, 0, 0, 25439], [25409, 32, 25408, 33], [20512, 3869, 16907, 8322], [23, 18, 22878, 23435], [17014, 24963, 1325, 8428]];
 
sub<GL(2,Integers(25440))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 25440=253553 25440 = 2^{5} \cdot 3 \cdot 5 \cdot 53 , index 768768, genus 1313, and generators

(10321),(13201),(52868381),(133921113020671),(49838162179142863),(167990025439),(25409322540833),(205123869169078322),(23182287823435),(170142496313258428)\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 1 & 3392 \\ 11130 & 20671 \end{array}\right),\left(\begin{array}{rr} 4983 & 8162 \\ 17914 & 2863 \end{array}\right),\left(\begin{array}{rr} 16799 & 0 \\ 0 & 25439 \end{array}\right),\left(\begin{array}{rr} 25409 & 32 \\ 25408 & 33 \end{array}\right),\left(\begin{array}{rr} 20512 & 3869 \\ 16907 & 8322 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 22878 & 23435 \end{array}\right),\left(\begin{array}{rr} 17014 & 24963 \\ 1325 & 8428 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[25440])K:=\Q(E[25440]) is a degree-9129116565504091291165655040 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/25440Z)\GL_2(\Z/25440\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 split multiplicative 44 14045=5532 14045 = 5 \cdot 53^{2}
55 nonsplit multiplicative 66 8427=3532 8427 = 3 \cdot 53^{2}
5353 additive 14061406 15=35 15 = 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 42135f consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 15a8, its twist by 5353.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(53)\Q(\sqrt{53}) Z/4Z\Z/4\Z 2.2.53.1-225.1-a2
22 Q(795)\Q(\sqrt{-795}) Z/4Z\Z/4\Z not in database
44 Q(15,53)\Q(\sqrt{-15}, \sqrt{53}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,53)\Q(\sqrt{5}, \sqrt{53}) Z/8Z\Z/8\Z not in database
44 Q(3,53)\Q(\sqrt{-3}, \sqrt{53}) Z/8Z\Z/8\Z not in database
88 8.0.23008642596000000.24 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.23008642596000000.14 Z/8Z\Z/8\Z not in database
88 8.0.399455600625.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.8.9986390015625.1 Z/16Z\Z/16\Z not in database
88 8.0.123288765625.1 Z/16Z\Z/16\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 16.0.99727985544174687744140625.1 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/32Z\Z/32\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 53
Reduction type ord split nonsplit add
λ\lambda-invariant(s) 2 1 0 -
μ\mu-invariant(s) 0 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.