Properties

Label 42135j1
Conductor 4213542135
Discriminant 266635546875266635546875
j-invariant 18502593688994921875 \frac{185025936889}{94921875}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x31675x+8750y^2+xy=x^3-1675x+8750 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x31675xz2+8750z3y^2z+xyz=x^3-1675xz^2+8750z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32170827x+414752454y^2=x^3-2170827x+414752454 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -1675, 8750])
 
gp: E = ellinit([1, 0, 0, -1675, 8750])
 
magma: E := EllipticCurve([1, 0, 0, -1675, 8750]);
 
oscar: E = elliptic_curve([1, 0, 0, -1675, 8750])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(25,200)(-25, 200)0.106964391878679242806745377630.10696439187867924280674537763\infty

Integral points

(35,175) \left(-35, 175\right) , (35,140) \left(-35, -140\right) , (25,200) \left(-25, 200\right) , (25,175) \left(-25, -175\right) , (5,20) \left(5, 20\right) , (5,25) \left(5, -25\right) , (50,200) \left(50, 200\right) , (50,250) \left(50, -250\right) , (1250,43550) \left(1250, 43550\right) , (1250,44800) \left(1250, -44800\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  42135 42135  = 355323 \cdot 5 \cdot 53^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  266635546875266635546875 = 35585323^{5} \cdot 5^{8} \cdot 53^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  18502593688994921875 \frac{185025936889}{94921875}  = 3558373413533^{-5} \cdot 5^{-8} \cdot 37^{3} \cdot 41^{3} \cdot 53
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.884651405713984305534083379620.88465140571398430553408337962
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.222936086788630666510005189780.22293608678863066651000518978
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97606710449786080.9760671044978608
Szpiro ratio: σm\sigma_{m} ≈ 3.1820368311041573.182036831104157

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.106964391878679242806745377630.10696439187867924280674537763
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.864604080720721145158267732610.86460408072072114515826773261
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 40 40  = 5231 5\cdot2^{3}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.69927398840465749391928487023.6992739884046574939192848702
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.699273988L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8646040.10696440123.699273988\displaystyle 3.699273988 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.864604 \cdot 0.106964 \cdot 40}{1^2} \approx 3.699273988

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   42135.2.a.b

qq2+q3q4+q5q62q7+3q8+q9q10q11q125q13+2q14+q15q16+4q17q184q19+O(q20) q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - 2 q^{7} + 3 q^{8} + q^{9} - q^{10} - q^{11} - q^{12} - 5 q^{13} + 2 q^{14} + q^{15} - q^{16} + 4 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 43200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 55 I5I_{5} split multiplicative -1 1 5 5
55 88 I8I_{8} split multiplicative -1 1 8 8
5353 11 IIII additive 1 2 2 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5, 2, 5, 3], [11, 2, 10, 3], [1, 2, 0, 1], [1, 0, 2, 1], [1, 1, 11, 0], [7, 2, 7, 3]]
 
GL(2,Integers(12)).subgroup(gens)
 
Gens := [[5, 2, 5, 3], [11, 2, 10, 3], [1, 2, 0, 1], [1, 0, 2, 1], [1, 1, 11, 0], [7, 2, 7, 3]];
 
sub<GL(2,Integers(12))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 12.2.0.a.1, level 12=223 12 = 2^{2} \cdot 3 , index 22, genus 00, and generators

(5253),(112103),(1201),(1021),(11110),(7273)\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 10 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 7 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[12])K:=\Q(E[12]) is a degree-23042304 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/12Z)\GL_2(\Z/12\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 8427=3532 8427 = 3 \cdot 53^{2}
33 split multiplicative 44 14045=5532 14045 = 5 \cdot 53^{2}
55 split multiplicative 66 2809=532 2809 = 53^{2}
5353 additive 522522 15=35 15 = 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 42135j consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.33708.1 Z/2Z\Z/2\Z not in database
66 6.6.13634751168.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
Reduction type ord split split ord ord ord ord ord ord ord ord ord ss ord ord add
λ\lambda-invariant(s) 14 2 2 1 1 1 1 1 1 1 1 1 1,1 1 1 -
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 -

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.