Properties

Label 42432.bc
Number of curves $2$
Conductor $42432$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bc1")
 
E.isogeny_class()
 

Elliptic curves in class 42432.bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
42432.bc1 42432e1 \([0, -1, 0, -4997, 137637]\) \(13478411517952/304317\) \(311620608\) \([2]\) \(30720\) \(0.74390\) \(\Gamma_0(N)\)-optimal
42432.bc2 42432e2 \([0, -1, 0, -4817, 147825]\) \(-754612278352/127035441\) \(-2081348665344\) \([2]\) \(61440\) \(1.0905\)  

Rank

sage: E.rank()
 

The elliptic curves in class 42432.bc have rank \(0\).

Complex multiplication

The elliptic curves in class 42432.bc do not have complex multiplication.

Modular form 42432.2.a.bc

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + 2 q^{7} + q^{9} + 2 q^{11} + q^{13} - 2 q^{15} - q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.