Properties

Label 42432e
Number of curves 22
Conductor 4243242432
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Elliptic curves in class 42432e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
42432.bc1 42432e1 [0,1,0,4997,137637][0, -1, 0, -4997, 137637] 13478411517952/30431713478411517952/304317 311620608311620608 [2][2] 3072030720 0.743900.74390 Γ0(N)\Gamma_0(N)-optimal
42432.bc2 42432e2 [0,1,0,4817,147825][0, -1, 0, -4817, 147825] 754612278352/127035441-754612278352/127035441 2081348665344-2081348665344 [2][2] 6144061440 1.09051.0905  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 42432e have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
13131+T1 + T
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 1+11T2 1 + 11 T^{2} 1.11.a
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 42432e do not have complex multiplication.

Modular form 42432.2.a.e

Copy content sage:E.q_eigenform(10)
 
qq3+2q5+2q7+q9+2q11+q132q15q17+6q19+O(q20)q - q^{3} + 2 q^{5} + 2 q^{7} + q^{9} + 2 q^{11} + q^{13} - 2 q^{15} - q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.