sage:E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 42432e
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
42432.bc1 |
42432e1 |
[0,−1,0,−4997,137637] |
13478411517952/304317 |
311620608 |
[2] |
30720 |
0.74390
|
Γ0(N)-optimal |
42432.bc2 |
42432e2 |
[0,−1,0,−4817,147825] |
−754612278352/127035441 |
−2081348665344 |
[2] |
61440 |
1.0905
|
|
sage:E.rank()
The elliptic curves in class 42432e have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
13 | 1+T |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1+11T2 |
1.11.a
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 42432e do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.