sage: E = EllipticCurve([1, 0, 0, -213, -1208])
gp: E = ellinit([1, 0, 0, -213, -1208])
magma: E := EllipticCurve([1, 0, 0, -213, -1208]);
oscar: E = elliptic_curve([1, 0, 0, -213, -1208])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 9 , 5 ) (-9, 5) ( − 9 , 5 ) 1.6292339382124243500020354457 1.6292339382124243500020354457 1 . 6 2 9 2 3 3 9 3 8 2 1 2 4 2 4 3 5 0 0 0 2 0 3 5 4 4 5 7 ∞ \infty ∞
( − 8 , 4 ) (-8, 4) ( − 8 , 4 ) 0 0 0 2 2 2
( − 9 , 5 ) \left(-9, 5\right) ( − 9 , 5 ) , ( − 9 , 4 ) \left(-9, 4\right) ( − 9 , 4 ) , ( − 8 , 4 ) \left(-8, 4\right) ( − 8 , 4 ) , ( 17 , 4 ) \left(17, 4\right) ( 1 7 , 4 ) , ( 17 , − 21 ) \left(17, -21\right) ( 1 7 , − 2 1 ) , ( 668 , 16930 ) \left(668, 16930\right) ( 6 6 8 , 1 6 9 3 0 ) , ( 668 , − 17598 ) \left(668, -17598\right) ( 6 6 8 , − 1 7 5 9 8 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
425 425 4 2 5 = 5 2 ⋅ 17 5^{2} \cdot 17 5 2 ⋅ 1 7
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
6640625 6640625 6 6 4 0 6 2 5 = 5 8 ⋅ 17 5^{8} \cdot 17 5 8 ⋅ 1 7
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
68417929 425 \frac{68417929}{425} 4 2 5 6 8 4 1 7 9 2 9 = 5 − 2 ⋅ 1 7 − 1 ⋅ 40 9 3 5^{-2} \cdot 17^{-1} \cdot 409^{3} 5 − 2 ⋅ 1 7 − 1 ⋅ 4 0 9 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.14703144562902693023780937167 0.14703144562902693023780937167 0 . 1 4 7 0 3 1 4 4 5 6 2 9 0 2 6 9 3 0 2 3 7 8 0 9 3 7 1 6 7
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.65768751058802325706257029494 -0.65768751058802325706257029494 − 0 . 6 5 7 6 8 7 5 1 0 5 8 8 0 2 3 2 5 7 0 6 2 5 7 0 2 9 4 9 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.8484639388765889 0.8484639388765889 0 . 8 4 8 4 6 3 9 3 8 8 7 6 5 8 8 9
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.576563921918467 4.576563921918467 4 . 5 7 6 5 6 3 9 2 1 9 1 8 4 6 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.6292339382124243500020354457 1.6292339382124243500020354457 1 . 6 2 9 2 3 3 9 3 8 2 1 2 4 2 4 3 5 0 0 0 2 0 3 5 4 4 5 7
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 1.2501339246713551684309946687 1.2501339246713551684309946687 1 . 2 5 0 1 3 3 9 2 4 6 7 1 3 5 5 1 6 8 4 3 0 9 9 4 6 6 8 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 2 2 2
= 2 ⋅ 1 2\cdot1 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 1.0183803086926331116116444452 1.0183803086926331116116444452 1 . 0 1 8 3 8 0 3 0 8 6 9 2 6 3 3 1 1 1 6 1 1 6 4 4 4 4 5 2
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
1.018380309 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.250134 ⋅ 1.629234 ⋅ 2 2 2 ≈ 1.018380309 \begin{aligned} 1.018380309 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.250134 \cdot 1.629234 \cdot 2}{2^2} \\ & \approx 1.018380309\end{aligned} 1 . 0 1 8 3 8 0 3 0 9 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 1 . 2 5 0 1 3 4 ⋅ 1 . 6 2 9 2 3 4 ⋅ 2 ≈ 1 . 0 1 8 3 8 0 3 0 9
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 0, 0, -213, -1208]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 0, 0, -213, -1208]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
425.2.a.a
q − q 2 − 2 q 3 − q 4 + 2 q 6 + 2 q 7 + 3 q 8 + q 9 + 2 q 11 + 2 q 12 − 2 q 13 − 2 q 14 − q 16 − q 17 − q 18 + O ( q 20 ) q - q^{2} - 2 q^{3} - q^{4} + 2 q^{6} + 2 q^{7} + 3 q^{8} + q^{9} + 2 q^{11} + 2 q^{12} - 2 q^{13} - 2 q^{14} - q^{16} - q^{17} - q^{18} + O(q^{20}) q − q 2 − 2 q 3 − q 4 + 2 q 6 + 2 q 7 + 3 q 8 + q 9 + 2 q 1 1 + 2 q 1 2 − 2 q 1 3 − 2 q 1 4 − q 1 6 − q 1 7 − q 1 8 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[341, 8, 0, 1], [673, 8, 672, 9], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [3, 8, 28, 75], [401, 674, 142, 5], [86, 1, 103, 4], [5, 8, 48, 77], [511, 8, 344, 33]]
GL(2,Integers(680)).subgroup(gens)
magma: Gens := [[341, 8, 0, 1], [673, 8, 672, 9], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [3, 8, 28, 75], [401, 674, 142, 5], [86, 1, 103, 4], [5, 8, 48, 77], [511, 8, 344, 33]];
sub<GL(2,Integers(680))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 680 = 2 3 ⋅ 5 ⋅ 17 680 = 2^{3} \cdot 5 \cdot 17 6 8 0 = 2 3 ⋅ 5 ⋅ 1 7 , index 48 48 4 8 , genus 0 0 0 , and generators
( 341 8 0 1 ) , ( 673 8 672 9 ) , ( 1 0 8 1 ) , ( 1 8 0 1 ) , ( 1 4 4 17 ) , ( 3 8 28 75 ) , ( 401 674 142 5 ) , ( 86 1 103 4 ) , ( 5 8 48 77 ) , ( 511 8 344 33 ) \left(\begin{array}{rr}
341 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
673 & 8 \\
672 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
3 & 8 \\
28 & 75
\end{array}\right),\left(\begin{array}{rr}
401 & 674 \\
142 & 5
\end{array}\right),\left(\begin{array}{rr}
86 & 1 \\
103 & 4
\end{array}\right),\left(\begin{array}{rr}
5 & 8 \\
48 & 77
\end{array}\right),\left(\begin{array}{rr}
511 & 8 \\
344 & 33
\end{array}\right) ( 3 4 1 0 8 1 ) , ( 6 7 3 6 7 2 8 9 ) , ( 1 8 0 1 ) , ( 1 0 8 1 ) , ( 1 4 4 1 7 ) , ( 3 2 8 8 7 5 ) , ( 4 0 1 1 4 2 6 7 4 5 ) , ( 8 6 1 0 3 1 4 ) , ( 5 4 8 8 7 7 ) , ( 5 1 1 3 4 4 8 3 3 ) .
The torsion field K : = Q ( E [ 680 ] ) K:=\Q(E[680]) K : = Q ( E [ 6 8 0 ] ) is a degree-1203240960 1203240960 1 2 0 3 2 4 0 9 6 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 680 Z ) \GL_2(\Z/680\Z) GL 2 ( Z / 6 8 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 425.a
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
85.a1 , its twist by 5 5 5 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 17 ) \Q(\sqrt{17}) Q ( 1 7 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.6800.1
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.4.241375690000.1
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.13363360000.2
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.2.2854069171875.2
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
7
13
19
23
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97