Properties

Label 4275g3
Conductor 42754275
Discriminant 4.755×10174.755\times 10^{17}
j-invariant 20959516925820141748046875 \frac{209595169258201}{41748046875}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2278442x45727659y^2+xy=x^3-x^2-278442x-45727659 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z278442xz245727659z3y^2z+xyz=x^3-x^2z-278442xz^2-45727659z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x34455075x2931025250y^2=x^3-4455075x-2931025250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -278442, -45727659])
 
gp: E = ellinit([1, -1, 0, -278442, -45727659])
 
magma: E := EllipticCurve([1, -1, 0, -278442, -45727659]);
 
oscar: E = elliptic_curve([1, -1, 0, -278442, -45727659])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1629/4,1629/8)(-1629/4, 1629/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  4275 4275  = 3252193^{2} \cdot 5^{2} \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  475536346435546875475536346435546875 = 38518193^{8} \cdot 5^{18} \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  20959516925820141748046875 \frac{209595169258201}{41748046875}  = 32512191191331133^{-2} \cdot 5^{-12} \cdot 19^{-1} \cdot 191^{3} \cdot 311^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.10816395537795903243031844612.1081639553779590324303184461
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.754138854826853999432316161030.75413885482685399943231616103
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98100063846989880.9810006384698988
Szpiro ratio: σm\sigma_{m} ≈ 5.8877182418366435.887718241836643

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.210727777630050602801552384030.21072777763005060280155238403
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22221 2^{2}\cdot2^{2}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.842911110520202411206209536110.84291111052020241120620953611
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.842911111L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2107281.00000016220.842911111\displaystyle 0.842911111 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.210728 \cdot 1.000000 \cdot 16}{2^2} \approx 0.842911111

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   4275.2.a.j

q+q2q44q73q84q112q134q14q16+2q17q19+O(q20) q + q^{2} - q^{4} - 4 q^{7} - 3 q^{8} - 4 q^{11} - 2 q^{13} - 4 q^{14} - q^{16} + 2 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 55296
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 44 I2I_{2}^{*} additive -1 2 8 2
55 44 I12I_{12}^{*} additive 1 2 18 12
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 8, 1], [1, 8, 0, 1], [844, 1521, 1623, 766], [1, 4, 4, 17], [1823, 1512, 1212, 1487], [7, 6, 2274, 2275], [1048, 2193, 1833, 1120], [1519, 0, 0, 2279], [2273, 8, 2272, 9], [859, 858, 1818, 1435]]
 
GL(2,Integers(2280)).subgroup(gens)
 
Gens := [[1, 0, 8, 1], [1, 8, 0, 1], [844, 1521, 1623, 766], [1, 4, 4, 17], [1823, 1512, 1212, 1487], [7, 6, 2274, 2275], [1048, 2193, 1833, 1120], [1519, 0, 0, 2279], [2273, 8, 2272, 9], [859, 858, 1818, 1435]];
 
sub<GL(2,Integers(2280))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 , index 4848, genus 00, and generators

(1081),(1801),(84415211623766),(14417),(1823151212121487),(7622742275),(1048219318331120),(1519002279),(2273822729),(85985818181435)\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 844 & 1521 \\ 1623 & 766 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1823 & 1512 \\ 1212 & 1487 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2274 & 2275 \end{array}\right),\left(\begin{array}{rr} 1048 & 2193 \\ 1833 & 1120 \end{array}\right),\left(\begin{array}{rr} 1519 & 0 \\ 0 & 2279 \end{array}\right),\left(\begin{array}{rr} 2273 & 8 \\ 2272 & 9 \end{array}\right),\left(\begin{array}{rr} 859 & 858 \\ 1818 & 1435 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2280])K:=\Q(E[2280]) is a degree-9077391360090773913600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2280Z)\GL_2(\Z/2280\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 88 475=5219 475 = 5^{2} \cdot 19
55 additive 1818 171=3219 171 = 3^{2} \cdot 19
1919 nonsplit multiplicative 2020 225=3252 225 = 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 4275g consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 285c4, its twist by 15-15.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(19)\Q(\sqrt{19}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(285)\Q(\sqrt{-285}) Z/4Z\Z/4\Z not in database
22 Q(15)\Q(\sqrt{-15}) Z/4Z\Z/4\Z not in database
44 Q(15,19)\Q(\sqrt{-15}, \sqrt{19}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 8.0.4678560000.2 Z/8Z\Z/8\Z not in database
88 8.2.14428733866875.5 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 19
Reduction type ord add add nonsplit
λ\lambda-invariant(s) 3 - - 0
μ\mu-invariant(s) 1 - - 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.