Properties

Label 42978.c2
Conductor 4297842978
Discriminant 1.532×10211.532\times 10^{21}
j-invariant 1118257597603389768467386583383931532291201797601099556 \frac{111825759760338976846738658338393}{1532291201797601099556}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x21003704909x12239735151735y^2+xy=x^3+x^2-1003704909x-12239735151735 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z1003704909xz212239735151735z3y^2z+xyz=x^3+x^2z-1003704909xz^2-12239735151735z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31300801562739x571037571215910450y^2=x^3-1300801562739x-571037571215910450 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -1003704909, -12239735151735])
 
gp: E = ellinit([1, 1, 0, -1003704909, -12239735151735])
 
magma: E := EllipticCurve([1, 1, 0, -1003704909, -12239735151735]);
 
oscar: E = elliptic_curve([1, 1, 0, -1003704909, -12239735151735])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1452400630322027/4566650929,55016681170082943648278/308600569829033)(1452400630322027/4566650929, 55016681170082943648278/308600569829033)30.87935928363562294609032863430.879359283635622946090328634\infty
(18290,9145)(-18290, 9145)0022
(36582,18291)(36582, -18291)0022

Integral points

(18290,9145) \left(-18290, 9145\right) , (36582,18291) \left(36582, -18291\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  42978 42978  = 231319292 \cdot 3 \cdot 13 \cdot 19 \cdot 29
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  15322912017976010995561532291201797601099556 = 22341321962962^{2} \cdot 3^{4} \cdot 13^{2} \cdot 19^{6} \cdot 29^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1118257597603389768467386583383931532291201797601099556 \frac{111825759760338976846738658338393}{1532291201797601099556}  = 223473132196296688254795132^{-2} \cdot 3^{-4} \cdot 7^{3} \cdot 13^{-2} \cdot 19^{-6} \cdot 29^{-6} \cdot 6882547951^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.62089598083175768564728944743.6208959808317576856472894474
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 3.62089598083175768564728944743.6208959808317576856472894474
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.04592308796979941.0459230879697994
Szpiro ratio: σm\sigma_{m} ≈ 6.917081558680416.91708155868041

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 30.87935928363562294609032863430.879359283635622946090328634
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0268224252047364002041853883450.026822425204736400204185388345
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 96 96  = 2222(23) 2\cdot2\cdot2\cdot2\cdot( 2 \cdot 3 )
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.96955582853299450485822322374.9695558285329945048582232237
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.969555829L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.02682230.87935996424.969555829\displaystyle 4.969555829 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.026822 \cdot 30.879359 \cdot 96}{4^2} \approx 4.969555829

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   42978.2.a.c

qq2q3+q4+2q5+q6+4q7q8+q92q104q11q12+q134q142q15+q16+2q17q18q19+O(q20) q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} - 2 q^{10} - 4 q^{11} - q^{12} + q^{13} - 4 q^{14} - 2 q^{15} + q^{16} + 2 q^{17} - q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 20459520
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
33 22 I4I_{4} nonsplit multiplicative 1 1 4 4
1313 22 I2I_{2} split multiplicative -1 1 2 2
1919 22 I6I_{6} nonsplit multiplicative 1 1 6 6
2929 66 I6I_{6} split multiplicative -1 1 6 6

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [45241, 4, 33178, 9], [57301, 4, 57300, 5], [42981, 4, 28654, 3], [4409, 2, 0, 1], [1, 4, 0, 1], [28653, 4, 2, 9], [15811, 2, 27662, 57303]]
 
GL(2,Integers(57304)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [45241, 4, 33178, 9], [57301, 4, 57300, 5], [42981, 4, 28654, 3], [4409, 2, 0, 1], [1, 4, 0, 1], [28653, 4, 2, 9], [15811, 2, 27662, 57303]];
 
sub<GL(2,Integers(57304))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 57304=23131929 57304 = 2^{3} \cdot 13 \cdot 19 \cdot 29 , index 4848, genus 00, and generators

(1041),(452414331789),(573014573005),(429814286543),(4409201),(1401),(28653429),(1581122766257303)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 45241 & 4 \\ 33178 & 9 \end{array}\right),\left(\begin{array}{rr} 57301 & 4 \\ 57300 & 5 \end{array}\right),\left(\begin{array}{rr} 42981 & 4 \\ 28654 & 3 \end{array}\right),\left(\begin{array}{rr} 4409 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28653 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 15811 & 2 \\ 27662 & 57303 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[57304])K:=\Q(E[57304]) is a degree-7042839324917760070428393249177600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/57304Z)\GL_2(\Z/57304\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 1 1
33 nonsplit multiplicative 44 26=213 26 = 2 \cdot 13
1313 split multiplicative 1414 3306=231929 3306 = 2 \cdot 3 \cdot 19 \cdot 29
1919 nonsplit multiplicative 2020 2262=231329 2262 = 2 \cdot 3 \cdot 13 \cdot 29
2929 split multiplicative 3030 1482=231319 1482 = 2 \cdot 3 \cdot 13 \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 42978.c consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(13,38)\Q(\sqrt{13}, \sqrt{-38}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(29,38)\Q(\sqrt{29}, \sqrt{38}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(13,29)\Q(\sqrt{-13}, \sqrt{-29}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.80951927472.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit ord ord ord split ord nonsplit ss split ord ord ord ord ord
λ\lambda-invariant(s) 2 1 3 1 1 2 1 1 1,1 2 1 1 1 1 1
μ\mu-invariant(s) 1 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.