Properties

Label 42978.r2
Conductor 4297842978
Discriminant 8.828×1022-8.828\times 10^{22}
j-invariant 661260017838789511447031988280159906925363790998 \frac{6612600178387895114470319}{88280159906925363790998}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+3910355x13981592329y^2+xy=x^3+3910355x-13981592329 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+3910355xz213981592329z3y^2z+xyz=x^3+3910355xz^2-13981592329z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+5067820053x652340375162010y^2=x^3+5067820053x-652340375162010 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 0, 0, 3910355, -13981592329])
 
Copy content gp:E = ellinit([1, 0, 0, 3910355, -13981592329])
 
Copy content magma:E := EllipticCurve([1, 0, 0, 3910355, -13981592329]);
 
Copy content oscar:E = elliptic_curve([1, 0, 0, 3910355, -13981592329])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(377987/196,71637061/2744)(377987/196, 71637061/2744)5.44077610404441232116782579515.4407761040444123211678257951\infty
(1327261/400,1494671681/8000)(1327261/400, 1494671681/8000)7.16845644946632143155334881177.1684564494663214315533488117\infty

Integral points

None

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  42978 42978  = 231319292 \cdot 3 \cdot 13 \cdot 19 \cdot 29
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  88280159906925363790998-88280159906925363790998 = 1233131910295-1 \cdot 2 \cdot 3^{3} \cdot 13 \cdot 19^{10} \cdot 29^{5}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  661260017838789511447031988280159906925363790998 \frac{6612600178387895114470319}{88280159906925363790998}  = 2133131191029527136593105132^{-1} \cdot 3^{-3} \cdot 13^{-1} \cdot 19^{-10} \cdot 29^{-5} \cdot 271^{3} \cdot 659^{3} \cdot 1051^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.08366973170254117742108305673.0836697317025411774210830567
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 3.08366973170254117742108305673.0836697317025411774210830567
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00748871998456041.0074887199845604
Szpiro ratio: σm\sigma_{m} ≈ 5.6470474178002335.647047417800233

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 37.96594105553138717011889195237.965941055531387170118891952
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.0526951314103779584845614075020.052695131410377958484561407502
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 13121 1\cdot3\cdot1\cdot2\cdot1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 12.00372151823934062313179642312.003721518239340623131796423
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

12.003721518L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.05269537.96594161212.003721518\begin{aligned} 12.003721518 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.052695 \cdot 37.965941 \cdot 6}{1^2} \\ & \approx 12.003721518\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 0, 0, 3910355, -13981592329]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 0, 0, 3910355, -13981592329]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   42978.2.a.r

q+q2+q3+q44q5+q62q7+q8+q94q103q11+q12+q132q144q15+q167q17+q18q19+O(q20) q + q^{2} + q^{3} + q^{4} - 4 q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9} - 4 q^{10} - 3 q^{11} + q^{12} + q^{13} - 2 q^{14} - 4 q^{15} + q^{16} - 7 q^{17} + q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9000000
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 33 I3I_{3} split multiplicative -1 1 3 3
1313 11 I1I_{1} split multiplicative -1 1 1 1
1919 22 I10I_{10} nonsplit multiplicative 1 1 10 10
2929 11 I5I_{5} nonsplit multiplicative 1 1 5 5

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.1.2 5.24.0.3

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[6, 5, 30155, 45236], [6, 13, 45185, 45121], [45231, 10, 45230, 11], [17406, 5, 38275, 45236], [33937, 22630, 45200, 42921], [1, 0, 10, 1], [1, 10, 0, 1], [11311, 10, 0, 1], [6, 5, 22615, 45236], [43686, 5, 38995, 45236]] GL(2,Integers(45240)).subgroup(gens)
 
Copy content magma:Gens := [[6, 5, 30155, 45236], [6, 13, 45185, 45121], [45231, 10, 45230, 11], [17406, 5, 38275, 45236], [33937, 22630, 45200, 42921], [1, 0, 10, 1], [1, 10, 0, 1], [11311, 10, 0, 1], [6, 5, 22615, 45236], [43686, 5, 38995, 45236]]; sub<GL(2,Integers(45240))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 45240=23351329 45240 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 29 , index 4848, genus 11, and generators

(653015545236),(6134518545121),(45231104523011),(1740653827545236),(33937226304520042921),(10101),(11001),(113111001),(652261545236),(4368653899545236)\left(\begin{array}{rr} 6 & 5 \\ 30155 & 45236 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 45185 & 45121 \end{array}\right),\left(\begin{array}{rr} 45231 & 10 \\ 45230 & 11 \end{array}\right),\left(\begin{array}{rr} 17406 & 5 \\ 38275 & 45236 \end{array}\right),\left(\begin{array}{rr} 33937 & 22630 \\ 45200 & 42921 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11311 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 22615 & 45236 \end{array}\right),\left(\begin{array}{rr} 43686 & 5 \\ 38995 & 45236 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[45240])K:=\Q(E[45240]) is a degree-1317958236241920013179582362419200 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/45240Z)\GL_2(\Z/45240\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 1131=31329 1131 = 3 \cdot 13 \cdot 29
33 split multiplicative 44 14326=2131929 14326 = 2 \cdot 13 \cdot 19 \cdot 29
55 good 22 78=2313 78 = 2 \cdot 3 \cdot 13
1313 split multiplicative 1414 3306=231929 3306 = 2 \cdot 3 \cdot 19 \cdot 29
1919 nonsplit multiplicative 2020 2262=231329 2262 = 2 \cdot 3 \cdot 13 \cdot 29
2929 nonsplit multiplicative 3030 1482=231319 1482 = 2 \cdot 3 \cdot 13 \cdot 19

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 42978.r consists of 2 curves linked by isogenies of degree 5.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.9048.1 Z/2Z\Z/2\Z not in database
44 Q(ζ5)\Q(\zeta_{5}) Z/5Z\Z/5\Z not in database
55 5.1.115672050000.7 Z/5Z\Z/5\Z not in database
66 6.0.740726318592.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/10Z\Z/10\Z not in database
1515 15.1.2535536379673377465657033505536000000000000000.1 Z/10Z\Z/10\Z not in database
2020 20.0.22378127440839359772149500781250000000000000000.11 Z/5ZZ/5Z\Z/5\Z \oplus \Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split split ord ord ord split ord nonsplit ord nonsplit ord ord ord ord ord
λ\lambda-invariant(s) 12 3 4 2 2 3 2 2 2 2 2 2 2 2 2
μ\mu-invariant(s) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.