y2+xy=x3+3910355x−13981592329
|
(homogenize, simplify) |
y2z+xyz=x3+3910355xz2−13981592329z3
|
(dehomogenize, simplify) |
y2=x3+5067820053x−652340375162010
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, 0, 0, 3910355, -13981592329])
gp:E = ellinit([1, 0, 0, 3910355, -13981592329])
magma:E := EllipticCurve([1, 0, 0, 3910355, -13981592329]);
oscar:E = elliptic_curve([1, 0, 0, 3910355, -13981592329])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z⊕Z
magma:MordellWeilGroup(E);
P | h^(P) | Order |
(377987/196,71637061/2744) | 5.4407761040444123211678257951 | ∞ |
(1327261/400,1494671681/8000) | 7.1684564494663214315533488117 | ∞ |
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
Conductor: |
N |
= |
42978 | = | 2⋅3⋅13⋅19⋅29 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
Discriminant: |
Δ |
= |
−88280159906925363790998 | = | −1⋅2⋅33⋅13⋅1910⋅295 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
j-invariant: |
j |
= |
882801599069253637909986612600178387895114470319 | = | 2−1⋅3−3⋅13−1⋅19−10⋅29−5⋅2713⋅6593⋅10513 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 3.0836697317025411774210830567 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 3.0836697317025411774210830567 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 1.0074887199845604 |
|
Szpiro ratio: |
σm | ≈ | 5.647047417800233 |
|
Analytic rank: |
ran | = | 2
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
Mordell-Weil rank: |
r | = | 2
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
Regulator: |
Reg(E/Q) | ≈ | 37.965941055531387170118891952 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
Real period: |
Ω | ≈ | 0.052695131410377958484561407502 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 6
= 1⋅3⋅1⋅2⋅1
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 1 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
Special value: |
L(2)(E,1)/2! | ≈ | 12.003721518239340623131796423 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
12.003721518≈L(2)(E,1)/2!=?#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.052695⋅37.965941⋅6≈12.003721518
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 0, 0, 3910355, -13981592329]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 0, 0, 3910355, -13981592329]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
42978.2.a.r
q+q2+q3+q4−4q5+q6−2q7+q8+q9−4q10−3q11+q12+q13−2q14−4q15+q16−7q17+q18−q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable.
There
are 5 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[6, 5, 30155, 45236], [6, 13, 45185, 45121], [45231, 10, 45230, 11], [17406, 5, 38275, 45236], [33937, 22630, 45200, 42921], [1, 0, 10, 1], [1, 10, 0, 1], [11311, 10, 0, 1], [6, 5, 22615, 45236], [43686, 5, 38995, 45236]]
GL(2,Integers(45240)).subgroup(gens)
magma:Gens := [[6, 5, 30155, 45236], [6, 13, 45185, 45121], [45231, 10, 45230, 11], [17406, 5, 38275, 45236], [33937, 22630, 45200, 42921], [1, 0, 10, 1], [1, 10, 0, 1], [11311, 10, 0, 1], [6, 5, 22615, 45236], [43686, 5, 38995, 45236]];
sub<GL(2,Integers(45240))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 45240=23⋅3⋅5⋅13⋅29, index 48, genus 1, and generators
(630155545236),(6451851345121),(45231452301011),(1740638275545236),(33937452002263042921),(11001),(10101),(113110101),(622615545236),(4368638995545236).
The torsion field K:=Q(E[45240]) is a degree-13179582362419200 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/45240Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
split multiplicative |
4 |
1131=3⋅13⋅29 |
3 |
split multiplicative |
4 |
14326=2⋅13⋅19⋅29 |
5 |
good |
2 |
78=2⋅3⋅13 |
13 |
split multiplicative |
14 |
3306=2⋅3⋅19⋅29 |
19 |
nonsplit multiplicative |
20 |
2262=2⋅3⋅13⋅29 |
29 |
nonsplit multiplicative |
30 |
1482=2⋅3⋅13⋅19 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
5.
Its isogeny class 42978.r
consists of 2 curves linked by isogenies of
degree 5.
This elliptic curve is its own minimal quadratic twist.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.