sage:E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 42978.k
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
42978.k1 |
42978m1 |
[1,1,1,−58,−157] |
21601086625/4899492 |
4899492 |
[2] |
12288 |
−0.0035968
|
Γ0(N)-optimal |
42978.k2 |
42978m2 |
[1,1,1,132,−765] |
254237645375/437473062 |
−437473062 |
[2] |
24576 |
0.34298
|
|
sage:E.rank()
The elliptic curves in class 42978.k have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1+T |
13 | 1−T |
19 | 1−T |
29 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+5T2 |
1.5.a
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1−4T+11T2 |
1.11.ae
|
17 |
1+6T+17T2 |
1.17.g
|
23 |
1+8T+23T2 |
1.23.i
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 42978.k do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.