Properties

Label 42978a1
Conductor 4297842978
Discriminant 29750403072-29750403072
j-invariant 364018218688729750403072 \frac{3640182186887}{29750403072}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+321x+8133y^2+xy=x^3+x^2+321x+8133 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+321xz2+8133z3y^2z+xyz=x^3+x^2z+321xz^2+8133z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+415341x+373219758y^2=x^3+415341x+373219758 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 321, 8133])
 
gp: E = ellinit([1, 1, 0, 321, 8133])
 
magma: E := EllipticCurve([1, 1, 0, 321, 8133]);
 
oscar: E = elliptic_curve([1, 1, 0, 321, 8133])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(11,64)(-11, 64)1.72908619338143900930229767801.7290861933814390093022976780\infty

Integral points

(11,64) \left(-11, 64\right) , (11,53) \left(-11, -53\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  42978 42978  = 231319292 \cdot 3 \cdot 13 \cdot 19 \cdot 29
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  29750403072-29750403072 = 121331331929-1 \cdot 2^{13} \cdot 3 \cdot 13^{3} \cdot 19 \cdot 29
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  364018218688729750403072 \frac{3640182186887}{29750403072}  = 213311331912911538332^{-13} \cdot 3^{-1} \cdot 13^{-3} \cdot 19^{-1} \cdot 29^{-1} \cdot 15383^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.691080503421086893538246606640.69108050342108689353824660664
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.691080503421086893538246606640.69108050342108689353824660664
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.87555305399926650.8755530539992665
Szpiro ratio: σm\sigma_{m} ≈ 2.95238826930359232.9523882693035923

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.72908619338143900930229767801.7290861933814390093022976780
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.859954909008180786772829308280.85995490900818078677282930828
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 3 3  = 11311 1\cdot1\cdot3\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.46080848028991121298051262674.4608084802899112129805126267
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.460808480L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8599551.7290863124.460808480\displaystyle 4.460808480 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.859955 \cdot 1.729086 \cdot 3}{1^2} \approx 4.460808480

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   42978.2.a.b

qq2q3+q4+2q5+q6q7q8+q92q10+6q11q12+q13+q142q15+q163q17q18q19+O(q20) q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - 2 q^{10} + 6 q^{11} - q^{12} + q^{13} + q^{14} - 2 q^{15} + q^{16} - 3 q^{17} - q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 43680
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I13I_{13} nonsplit multiplicative 1 1 13 13
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1313 33 I3I_{3} split multiplicative -1 1 3 3
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2929 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[171911, 2, 171910, 3], [57305, 2, 57305, 3], [1, 2, 0, 1], [1, 0, 2, 1], [100777, 2, 100777, 3], [119017, 2, 119017, 3], [128935, 2, 128935, 3], [45241, 2, 45241, 3], [1, 1, 171911, 0], [85957, 2, 85957, 3]]
 
GL(2,Integers(171912)).subgroup(gens)
 
Gens := [[171911, 2, 171910, 3], [57305, 2, 57305, 3], [1, 2, 0, 1], [1, 0, 2, 1], [100777, 2, 100777, 3], [119017, 2, 119017, 3], [128935, 2, 128935, 3], [45241, 2, 45241, 3], [1, 1, 171911, 0], [85957, 2, 85957, 3]];
 
sub<GL(2,Integers(171912))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 171912=233131929 171912 = 2^{3} \cdot 3 \cdot 13 \cdot 19 \cdot 29 , index 22, genus 00, and generators

(17191121719103),(573052573053),(1201),(1021),(10077721007773),(11901721190173),(12893521289353),(452412452413),(111719110),(859572859573)\left(\begin{array}{rr} 171911 & 2 \\ 171910 & 3 \end{array}\right),\left(\begin{array}{rr} 57305 & 2 \\ 57305 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 100777 & 2 \\ 100777 & 3 \end{array}\right),\left(\begin{array}{rr} 119017 & 2 \\ 119017 & 3 \end{array}\right),\left(\begin{array}{rr} 128935 & 2 \\ 128935 & 3 \end{array}\right),\left(\begin{array}{rr} 45241 & 2 \\ 45241 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 171911 & 0 \end{array}\right),\left(\begin{array}{rr} 85957 & 2 \\ 85957 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[171912])K:=\Q(E[171912]) is a degree-8113350902305259520081133509023052595200 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/171912Z)\GL_2(\Z/171912\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 21489=3131929 21489 = 3 \cdot 13 \cdot 19 \cdot 29
33 nonsplit multiplicative 44 1102=21929 1102 = 2 \cdot 19 \cdot 29
1313 split multiplicative 1414 1653=31929 1653 = 3 \cdot 19 \cdot 29
1919 nonsplit multiplicative 2020 2262=231329 2262 = 2 \cdot 3 \cdot 13 \cdot 29
2929 split multiplicative 3030 1482=231319 1482 = 2 \cdot 3 \cdot 13 \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 42978a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.171912.1 Z/2Z\Z/2\Z not in database
66 6.0.5080641819222528.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit ord ord ord split ord nonsplit ss split ord ord ord ord ord
λ\lambda-invariant(s) 4 1 3 1 1 2 1 1 1,1 2 1 1 1 1 1
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.