y 2 + x y = x 3 − 459769306 x + 3796241996132 y^2+xy=x^3-459769306x+3796241996132 y 2 + x y = x 3 − 4 5 9 7 6 9 3 0 6 x + 3 7 9 6 2 4 1 9 9 6 1 3 2
(homogenize , simplify )
y 2 z + x y z = x 3 − 459769306 x z 2 + 3796241996132 z 3 y^2z+xyz=x^3-459769306xz^2+3796241996132z^3 y 2 z + x y z = x 3 − 4 5 9 7 6 9 3 0 6 x z 2 + 3 7 9 6 2 4 1 9 9 6 1 3 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 595861020603 x + 177119254154596374 y^2=x^3-595861020603x+177119254154596374 y 2 = x 3 − 5 9 5 8 6 1 0 2 0 6 0 3 x + 1 7 7 1 1 9 2 5 4 1 5 4 5 9 6 3 7 4
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 0, -459769306, 3796241996132])
gp: E = ellinit([1, 0, 0, -459769306, 3796241996132])
magma: E := EllipticCurve([1, 0, 0, -459769306, 3796241996132]);
oscar: E = elliptic_curve([1, 0, 0, -459769306, 3796241996132])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 7 Z \Z \oplus \Z/{7}\Z Z ⊕ Z / 7 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 9812 , 474326 ) (9812, 474326) ( 9 8 1 2 , 4 7 4 3 2 6 ) 2.5752300457588896697948367701 2.5752300457588896697948367701 2 . 5 7 5 2 3 0 0 4 5 7 5 8 8 8 9 6 6 9 7 9 4 8 3 6 7 7 0 1 ∞ \infty ∞
( 12116 , 59606 ) (12116, 59606) ( 1 2 1 1 6 , 5 9 6 0 6 ) 0 0 0 7 7 7
( − 2476 , 2219222 ) \left(-2476, 2219222\right) ( − 2 4 7 6 , 2 2 1 9 2 2 2 ) , ( − 2476 , − 2216746 ) \left(-2476, -2216746\right) ( − 2 4 7 6 , − 2 2 1 6 7 4 6 ) , ( 9812 , 474326 ) \left(9812, 474326\right) ( 9 8 1 2 , 4 7 4 3 2 6 ) , ( 9812 , − 484138 ) \left(9812, -484138\right) ( 9 8 1 2 , − 4 8 4 1 3 8 ) , ( 10292 , 387926 ) \left(10292, 387926\right) ( 1 0 2 9 2 , 3 8 7 9 2 6 ) , ( 10292 , − 398218 ) \left(10292, -398218\right) ( 1 0 2 9 2 , − 3 9 8 2 1 8 ) , ( 12116 , 59606 ) \left(12116, 59606\right) ( 1 2 1 1 6 , 5 9 6 0 6 ) , ( 12116 , − 71722 ) \left(12116, -71722\right) ( 1 2 1 1 6 , − 7 1 7 2 2 ) , ( 12686 , 66218 ) \left(12686, 66218\right) ( 1 2 6 8 6 , 6 6 2 1 8 ) , ( 12686 , − 78904 ) \left(12686, -78904\right) ( 1 2 6 8 6 , − 7 8 9 0 4 ) , ( 14852 , 486422 ) \left(14852, 486422\right) ( 1 4 8 5 2 , 4 8 6 4 2 2 ) , ( 14852 , − 501274 ) \left(14852, -501274\right) ( 1 4 8 5 2 , − 5 0 1 2 7 4 ) , ( 34004 , 5225174 ) \left(34004, 5225174\right) ( 3 4 0 0 4 , 5 2 2 5 1 7 4 ) , ( 34004 , − 5259178 ) \left(34004, -5259178\right) ( 3 4 0 0 4 , − 5 2 5 9 1 7 8 ) , ( 40844 , 7270334 ) \left(40844, 7270334\right) ( 4 0 8 4 4 , 7 2 7 0 3 3 4 ) , ( 40844 , − 7311178 ) \left(40844, -7311178\right) ( 4 0 8 4 4 , − 7 3 1 1 1 7 8 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
42978 42978 4 2 9 7 8 = 2 ⋅ 3 ⋅ 13 ⋅ 19 ⋅ 29 2 \cdot 3 \cdot 13 \cdot 19 \cdot 29 2 ⋅ 3 ⋅ 1 3 ⋅ 1 9 ⋅ 2 9
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 5737242625602477531070464 -5737242625602477531070464 − 5 7 3 7 2 4 2 6 2 5 6 0 2 4 7 7 5 3 1 0 7 0 4 6 4 = − 1 ⋅ 2 28 ⋅ 3 7 ⋅ 13 ⋅ 1 9 7 ⋅ 2 9 2 -1 \cdot 2^{28} \cdot 3^{7} \cdot 13 \cdot 19^{7} \cdot 29^{2} − 1 ⋅ 2 2 8 ⋅ 3 7 ⋅ 1 3 ⋅ 1 9 7 ⋅ 2 9 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
− 10748395438529140294639078020769 5737242625602477531070464 -\frac{10748395438529140294639078020769}{5737242625602477531070464} − 5 7 3 7 2 4 2 6 2 5 6 0 2 4 7 7 5 3 1 0 7 0 4 6 4 1 0 7 4 8 3 9 5 4 3 8 5 2 9 1 4 0 2 9 4 6 3 9 0 7 8 0 2 0 7 6 9 = − 1 ⋅ 2 − 28 ⋅ 3 − 7 ⋅ 1 3 − 1 ⋅ 1 9 − 7 ⋅ 2 9 − 2 ⋅ 8 3 3 ⋅ 31 3 3 ⋅ 54 7 3 ⋅ 155 3 3 -1 \cdot 2^{-28} \cdot 3^{-7} \cdot 13^{-1} \cdot 19^{-7} \cdot 29^{-2} \cdot 83^{3} \cdot 313^{3} \cdot 547^{3} \cdot 1553^{3} − 1 ⋅ 2 − 2 8 ⋅ 3 − 7 ⋅ 1 3 − 1 ⋅ 1 9 − 7 ⋅ 2 9 − 2 ⋅ 8 3 3 ⋅ 3 1 3 3 ⋅ 5 4 7 3 ⋅ 1 5 5 3 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 3.7003239301159229423821075166 3.7003239301159229423821075166 3 . 7 0 0 3 2 3 9 3 0 1 1 5 9 2 2 9 4 2 3 8 2 1 0 7 5 1 6 6
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 3.7003239301159229423821075166 3.7003239301159229423821075166 3 . 7 0 0 3 2 3 9 3 0 1 1 5 9 2 2 9 4 2 3 8 2 1 0 7 5 1 6 6
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0176711500540818 1.0176711500540818 1 . 0 1 7 6 7 1 1 5 0 0 5 4 0 8 1 8
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 6.69762466313401 6.69762466313401 6 . 6 9 7 6 2 4 6 6 3 1 3 4 0 1
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 2.5752300457588896697948367701 2.5752300457588896697948367701 2 . 5 7 5 2 3 0 0 4 5 7 5 8 8 8 9 6 6 9 7 9 4 8 3 6 7 7 0 1
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.074946059990541385505990626184 0.074946059990541385505990626184 0 . 0 7 4 9 4 6 0 5 9 9 9 0 5 4 1 3 8 5 5 0 5 9 9 0 6 2 6 1 8 4
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 2744 2744 2 7 4 4
= ( 2 2 ⋅ 7 ) ⋅ 7 ⋅ 1 ⋅ 7 ⋅ 2 ( 2^{2} \cdot 7 )\cdot7\cdot1\cdot7\cdot2 ( 2 2 ⋅ 7 ) ⋅ 7 ⋅ 1 ⋅ 7 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 7 7 7
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 10.808187347937861419417631778 10.808187347937861419417631778 1 0 . 8 0 8 1 8 7 3 4 7 9 3 7 8 6 1 4 1 9 4 1 7 6 3 1 7 7 8
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
10.808187348 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.074946 ⋅ 2.575230 ⋅ 2744 7 2 ≈ 10.808187348 \displaystyle 10.808187348 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.074946 \cdot 2.575230 \cdot 2744}{7^2} \approx 10.808187348 1 0 . 8 0 8 1 8 7 3 4 8 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 7 2 1 ⋅ 0 . 0 7 4 9 4 6 ⋅ 2 . 5 7 5 2 3 0 ⋅ 2 7 4 4 ≈ 1 0 . 8 0 8 1 8 7 3 4 8
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
42978.2.a.u
q + q 2 + q 3 + q 4 − q 5 + q 6 + q 7 + q 8 + q 9 − q 10 − 2 q 11 + q 12 − q 13 + q 14 − q 15 + q 16 + 4 q 17 + q 18 + q 19 + O ( q 20 ) q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - 2 q^{11} + q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 4 q^{17} + q^{18} + q^{19} + O(q^{20}) q + q 2 + q 3 + q 4 − q 5 + q 6 + q 7 + q 8 + q 9 − q 1 0 − 2 q 1 1 + q 1 2 − q 1 3 + q 1 4 − q 1 5 + q 1 6 + 4 q 1 7 + q 1 8 + q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 5 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[18565, 14, 5467, 99], [1, 14, 0, 1], [10375, 14, 10381, 99], [20735, 14, 20734, 15], [10375, 14, 0, 19267], [1, 0, 14, 1], [6385, 14, 3199, 99], [8, 5, 91, 57], [6917, 14, 6923, 99]]
GL(2,Integers(20748)).subgroup(gens)
Gens := [[18565, 14, 5467, 99], [1, 14, 0, 1], [10375, 14, 10381, 99], [20735, 14, 20734, 15], [10375, 14, 0, 19267], [1, 0, 14, 1], [6385, 14, 3199, 99], [8, 5, 91, 57], [6917, 14, 6923, 99]];
sub<GL(2,Integers(20748))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 20748 = 2 2 ⋅ 3 ⋅ 7 ⋅ 13 ⋅ 19 20748 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \cdot 19 2 0 7 4 8 = 2 2 ⋅ 3 ⋅ 7 ⋅ 1 3 ⋅ 1 9 , index 96 96 9 6 , genus 2 2 2 , and generators
( 18565 14 5467 99 ) , ( 1 14 0 1 ) , ( 10375 14 10381 99 ) , ( 20735 14 20734 15 ) , ( 10375 14 0 19267 ) , ( 1 0 14 1 ) , ( 6385 14 3199 99 ) , ( 8 5 91 57 ) , ( 6917 14 6923 99 ) \left(\begin{array}{rr}
18565 & 14 \\
5467 & 99
\end{array}\right),\left(\begin{array}{rr}
1 & 14 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
10375 & 14 \\
10381 & 99
\end{array}\right),\left(\begin{array}{rr}
20735 & 14 \\
20734 & 15
\end{array}\right),\left(\begin{array}{rr}
10375 & 14 \\
0 & 19267
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
14 & 1
\end{array}\right),\left(\begin{array}{rr}
6385 & 14 \\
3199 & 99
\end{array}\right),\left(\begin{array}{rr}
8 & 5 \\
91 & 57
\end{array}\right),\left(\begin{array}{rr}
6917 & 14 \\
6923 & 99
\end{array}\right) ( 1 8 5 6 5 5 4 6 7 1 4 9 9 ) , ( 1 0 1 4 1 ) , ( 1 0 3 7 5 1 0 3 8 1 1 4 9 9 ) , ( 2 0 7 3 5 2 0 7 3 4 1 4 1 5 ) , ( 1 0 3 7 5 0 1 4 1 9 2 6 7 ) , ( 1 1 4 0 1 ) , ( 6 3 8 5 3 1 9 9 1 4 9 9 ) , ( 8 9 1 5 5 7 ) , ( 6 9 1 7 6 9 2 3 1 4 9 9 ) .
The torsion field K : = Q ( E [ 20748 ] ) K:=\Q(E[20748]) K : = Q ( E [ 2 0 7 4 8 ] ) is a degree-312244108001280 312244108001280 3 1 2 2 4 4 1 0 8 0 0 1 2 8 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 20748 Z ) \GL_2(\Z/20748\Z) GL 2 ( Z / 2 0 7 4 8 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
741 = 3 ⋅ 13 ⋅ 19 741 = 3 \cdot 13 \cdot 19 7 4 1 = 3 ⋅ 1 3 ⋅ 1 9
3 3 3
split multiplicative
4 4 4
14326 = 2 ⋅ 13 ⋅ 19 ⋅ 29 14326 = 2 \cdot 13 \cdot 19 \cdot 29 1 4 3 2 6 = 2 ⋅ 1 3 ⋅ 1 9 ⋅ 2 9
7 7 7
good
2 2 2
377 = 13 ⋅ 29 377 = 13 \cdot 29 3 7 7 = 1 3 ⋅ 2 9
13 13 1 3
nonsplit multiplicative
14 14 1 4
3306 = 2 ⋅ 3 ⋅ 19 ⋅ 29 3306 = 2 \cdot 3 \cdot 19 \cdot 29 3 3 0 6 = 2 ⋅ 3 ⋅ 1 9 ⋅ 2 9
19 19 1 9
split multiplicative
20 20 2 0
2262 = 2 ⋅ 3 ⋅ 13 ⋅ 29 2262 = 2 \cdot 3 \cdot 13 \cdot 29 2 2 6 2 = 2 ⋅ 3 ⋅ 1 3 ⋅ 2 9
29 29 2 9
split multiplicative
30 30 3 0
1482 = 2 ⋅ 3 ⋅ 13 ⋅ 19 1482 = 2 \cdot 3 \cdot 13 \cdot 19 1 4 8 2 = 2 ⋅ 3 ⋅ 1 3 ⋅ 1 9
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
7.
Its isogeny class 42978r
consists of 2 curves linked by isogenies of
degree 7.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 7 Z \cong \Z/{7}\Z ≅ Z / 7 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.2964.1
Z / 14 Z \Z/14\Z Z / 1 4 Z
not in database
6 6 6
6.0.26039617344.2
Z / 2 Z ⊕ Z / 14 Z \Z/2\Z \oplus \Z/14\Z Z / 2 Z ⊕ Z / 1 4 Z
not in database
8 8 8
deg 8
Z / 21 Z \Z/21\Z Z / 2 1 Z
not in database
12 12 1 2
deg 12
Z / 28 Z \Z/28\Z Z / 2 8 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
5
7
11
17
23
31
37
41
43
53
59
61
67
71
73
79
83
89