Properties

Label 42978r1
Conductor 4297842978
Discriminant 5.737×1024-5.737\times 10^{24}
j-invariant 107483954385291402946390780207695737242625602477531070464 -\frac{10748395438529140294639078020769}{5737242625602477531070464}
CM no
Rank 11
Torsion structure Z/7Z\Z/{7}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3459769306x+3796241996132y^2+xy=x^3-459769306x+3796241996132 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3459769306xz2+3796241996132z3y^2z+xyz=x^3-459769306xz^2+3796241996132z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3595861020603x+177119254154596374y^2=x^3-595861020603x+177119254154596374 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -459769306, 3796241996132])
 
gp: E = ellinit([1, 0, 0, -459769306, 3796241996132])
 
magma: E := EllipticCurve([1, 0, 0, -459769306, 3796241996132]);
 
oscar: E = elliptic_curve([1, 0, 0, -459769306, 3796241996132])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/7Z\Z \oplus \Z/{7}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(9812,474326)(9812, 474326)2.57523004575888966979483677012.5752300457588896697948367701\infty
(12116,59606)(12116, 59606)0077

Integral points

(2476,2219222) \left(-2476, 2219222\right) , (2476,2216746) \left(-2476, -2216746\right) , (9812,474326) \left(9812, 474326\right) , (9812,484138) \left(9812, -484138\right) , (10292,387926) \left(10292, 387926\right) , (10292,398218) \left(10292, -398218\right) , (12116,59606) \left(12116, 59606\right) , (12116,71722) \left(12116, -71722\right) , (12686,66218) \left(12686, 66218\right) , (12686,78904) \left(12686, -78904\right) , (14852,486422) \left(14852, 486422\right) , (14852,501274) \left(14852, -501274\right) , (34004,5225174) \left(34004, 5225174\right) , (34004,5259178) \left(34004, -5259178\right) , (40844,7270334) \left(40844, 7270334\right) , (40844,7311178) \left(40844, -7311178\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  42978 42978  = 231319292 \cdot 3 \cdot 13 \cdot 19 \cdot 29
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  5737242625602477531070464-5737242625602477531070464 = 12283713197292-1 \cdot 2^{28} \cdot 3^{7} \cdot 13 \cdot 19^{7} \cdot 29^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  107483954385291402946390780207695737242625602477531070464 -\frac{10748395438529140294639078020769}{5737242625602477531070464}  = 1228371311972928333133547315533-1 \cdot 2^{-28} \cdot 3^{-7} \cdot 13^{-1} \cdot 19^{-7} \cdot 29^{-2} \cdot 83^{3} \cdot 313^{3} \cdot 547^{3} \cdot 1553^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.70032393011592294238210751663.7003239301159229423821075166
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 3.70032393011592294238210751663.7003239301159229423821075166
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01767115005408181.0176711500540818
Szpiro ratio: σm\sigma_{m} ≈ 6.697624663134016.69762466313401

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.57523004575888966979483677012.5752300457588896697948367701
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0749460599905413855059906261840.074946059990541385505990626184
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2744 2744  = (227)7172 ( 2^{2} \cdot 7 )\cdot7\cdot1\cdot7\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 77
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 10.80818734793786141941763177810.808187347937861419417631778
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

10.808187348L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0749462.57523027447210.808187348\displaystyle 10.808187348 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.074946 \cdot 2.575230 \cdot 2744}{7^2} \approx 10.808187348

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   42978.2.a.u

q+q2+q3+q4q5+q6+q7+q8+q9q102q11+q12q13+q14q15+q16+4q17+q18+q19+O(q20) q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - 2 q^{11} + q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 4 q^{17} + q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 11063808
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 2828 I28I_{28} split multiplicative -1 1 28 28
33 77 I7I_{7} split multiplicative -1 1 7 7
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1919 77 I7I_{7} split multiplicative -1 1 7 7
2929 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7B.1.1 7.48.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[18565, 14, 5467, 99], [1, 14, 0, 1], [10375, 14, 10381, 99], [20735, 14, 20734, 15], [10375, 14, 0, 19267], [1, 0, 14, 1], [6385, 14, 3199, 99], [8, 5, 91, 57], [6917, 14, 6923, 99]]
 
GL(2,Integers(20748)).subgroup(gens)
 
Gens := [[18565, 14, 5467, 99], [1, 14, 0, 1], [10375, 14, 10381, 99], [20735, 14, 20734, 15], [10375, 14, 0, 19267], [1, 0, 14, 1], [6385, 14, 3199, 99], [8, 5, 91, 57], [6917, 14, 6923, 99]];
 
sub<GL(2,Integers(20748))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 20748=22371319 20748 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \cdot 19 , index 9696, genus 22, and generators

(1856514546799),(11401),(10375141038199),(20735142073415),(1037514019267),(10141),(638514319999),(859157),(691714692399)\left(\begin{array}{rr} 18565 & 14 \\ 5467 & 99 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10375 & 14 \\ 10381 & 99 \end{array}\right),\left(\begin{array}{rr} 20735 & 14 \\ 20734 & 15 \end{array}\right),\left(\begin{array}{rr} 10375 & 14 \\ 0 & 19267 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 6385 & 14 \\ 3199 & 99 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 6917 & 14 \\ 6923 & 99 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[20748])K:=\Q(E[20748]) is a degree-312244108001280312244108001280 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/20748Z)\GL_2(\Z/20748\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 741=31319 741 = 3 \cdot 13 \cdot 19
33 split multiplicative 44 14326=2131929 14326 = 2 \cdot 13 \cdot 19 \cdot 29
77 good 22 377=1329 377 = 13 \cdot 29
1313 nonsplit multiplicative 1414 3306=231929 3306 = 2 \cdot 3 \cdot 19 \cdot 29
1919 split multiplicative 2020 2262=231329 2262 = 2 \cdot 3 \cdot 13 \cdot 29
2929 split multiplicative 3030 1482=231319 1482 = 2 \cdot 3 \cdot 13 \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 42978r consists of 2 curves linked by isogenies of degree 7.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/7Z\cong \Z/{7}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.2964.1 Z/14Z\Z/14\Z not in database
66 6.0.26039617344.2 Z/2ZZ/14Z\Z/2\Z \oplus \Z/14\Z not in database
88 deg 8 Z/21Z\Z/21\Z not in database
1212 deg 12 Z/28Z\Z/28\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split split ord ord ord nonsplit ord split ord split ord ord ss ord ord
λ\lambda-invariant(s) 4 2 7 51 1 1 1 2 1 2 1 1 1,1 1 1
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.