sage:E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 42978u
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
42978.x1 |
42978u1 |
[1,0,0,−162,−588] |
470366406433/129621648 |
129621648 |
[2] |
17152 |
0.26419
|
Γ0(N)-optimal |
42978.x2 |
42978u2 |
[1,0,0,418,−3720] |
8075838390047/10764183924 |
−10764183924 |
[2] |
34304 |
0.61077
|
|
sage:E.rank()
The elliptic curves in class 42978u have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1−T |
13 | 1+T |
19 | 1−T |
29 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+T+5T2 |
1.5.b
|
7 |
1−T+7T2 |
1.7.ab
|
11 |
1+2T+11T2 |
1.11.c
|
17 |
1−4T+17T2 |
1.17.ae
|
23 |
1−3T+23T2 |
1.23.ad
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 42978u do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.