Properties

Label 430950.im
Number of curves 22
Conductor 430950430950
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("im1")
 
E.isogeny_class()
 

Elliptic curves in class 430950.im

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
430950.im1 430950im2 [1,0,0,659188,183445742][1, 0, 0, -659188, 183445742] 420021471169/50191650420021471169/50191650 37853985616382812503785398561638281250 [2][2] 82944008294400 2.29572.2957 Γ0(N)\Gamma_0(N)-optimal*
430950.im2 430950im1 [1,0,0,59062,14656992][1, 0, 0, 59062, 14656992] 302111711/1404540302111711/1404540 105928848638437500-105928848638437500 [2][2] 41472004147200 1.94921.9492 Γ0(N)\Gamma_0(N)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 430950.im1.

Rank

sage: E.rank()
 

The elliptic curves in class 430950.im have rank 00.

Complex multiplication

The elliptic curves in class 430950.im do not have complex multiplication.

Modular form 430950.2.a.im

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q6+2q7+q8+q9+q12+2q14+q16+q17+q184q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} + 2 q^{7} + q^{8} + q^{9} + q^{12} + 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.