Properties

Label 430950.im
Number of curves $2$
Conductor $430950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("im1")
 
E.isogeny_class()
 

Elliptic curves in class 430950.im

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
430950.im1 430950im2 \([1, 0, 0, -659188, 183445742]\) \(420021471169/50191650\) \(3785398561638281250\) \([2]\) \(8294400\) \(2.2957\) \(\Gamma_0(N)\)-optimal*
430950.im2 430950im1 \([1, 0, 0, 59062, 14656992]\) \(302111711/1404540\) \(-105928848638437500\) \([2]\) \(4147200\) \(1.9492\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 430950.im1.

Rank

sage: E.rank()
 

The elliptic curves in class 430950.im have rank \(0\).

Complex multiplication

The elliptic curves in class 430950.im do not have complex multiplication.

Modular form 430950.2.a.im

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + 2 q^{7} + q^{8} + q^{9} + q^{12} + 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.