y2+xy=x3−659188x+183445742
|
(homogenize, simplify) |
y2z+xyz=x3−659188xz2+183445742z3
|
(dehomogenize, simplify) |
y2=x3−854307675x+8561407461750
|
(homogenize, minimize) |
sage: E = EllipticCurve([1, 0, 0, -659188, 183445742])
gp: E = ellinit([1, 0, 0, -659188, 183445742])
magma: E := EllipticCurve([1, 0, 0, -659188, 183445742]);
oscar: E = elliptic_curve([1, 0, 0, -659188, 183445742])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z/2Z
magma: MordellWeilGroup(E);
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor: |
N |
= |
430950 | = | 2⋅3⋅52⋅132⋅17 |
sage: E.conductor().factor()
|
Discriminant: |
Δ |
= |
3785398561638281250 | = | 2⋅310⋅58⋅136⋅17 |
sage: E.discriminant().factor()
|
j-invariant: |
j |
= |
50191650420021471169 | = | 2−1⋅3−10⋅5−2⋅17−1⋅74893 |
sage: E.j_invariant().factor()
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 2.2957446777103593498839461418 |
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 0.20855104276254079455682275441 |
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 0.9416584133819353 |
|
Szpiro ratio: |
σm | ≈ | 3.9934410527764683 |
|
Analytic rank: |
ran | = | 0
|
|
Mordell-Weil rank: |
r | = | 0
|
gp: [lower,upper] = ellrank(E)
|
Regulator: |
Reg(E/Q) | = | 1 |
G = E.gen \\ if available matdet(ellheightmatrix(E,G))
|
Real period: |
Ω | ≈ | 0.24014517754553168858201745473 |
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 80
= 1⋅(2⋅5)⋅22⋅2⋅1
|
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 2 |
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: |
L(E,1) | ≈ | 4.8029035509106337716403490947 |
r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
4.802903551≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈221⋅0.240145⋅1.000000⋅80≈4.802903551
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
430950.2.a.im
q+q2+q3+q4+q6+2q7+q8+q9+q12+2q14+q16+q17+q18−4q19+O(q20)
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
*
The optimal curve in
each isogeny class has not been determined in all cases for
conductors over 400000.
The Manin constant is correct provided that curve 430950im1 is optimal.
This elliptic curve is not semistable.
There
are 5 primes p
of bad reduction:
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [817, 4, 1634, 9], [2037, 4, 2036, 5], [482, 1, 1799, 0], [1361, 4, 682, 9], [257, 1786, 1784, 255], [2, 1, 1019, 0]]
GL(2,Integers(2040)).subgroup(gens)
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [817, 4, 1634, 9], [2037, 4, 2036, 5], [482, 1, 1799, 0], [1361, 4, 682, 9], [257, 1786, 1784, 255], [2, 1, 1019, 0]];
sub<GL(2,Integers(2040))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 2040=23⋅3⋅5⋅17, index 12, genus 0, and generators
(1401),(38411),(1225),(1041),(817163449),(2037203645),(482179910),(136168249),(25717841786255),(2101910).
The torsion field K:=Q(E[2040]) is a degree-231022264320 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/2040Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
split multiplicative |
4 |
71825=52⋅132⋅17 |
3 |
split multiplicative |
4 |
143650=2⋅52⋅132⋅17 |
5 |
additive |
18 |
5746=2⋅132⋅17 |
13 |
additive |
86 |
2550=2⋅3⋅52⋅17 |
17 |
split multiplicative |
18 |
25350=2⋅3⋅52⋅132 |
This curve has non-trivial cyclic isogenies of degree d for d=
2.
Its isogeny class 430950im
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
510c2, its twist by 65.
No Iwasawa invariant data is available for this curve.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.