Properties

Label 430950im2
Conductor 430950430950
Discriminant 3.785×10183.785\times 10^{18}
j-invariant 42002147116950191650 \frac{420021471169}{50191650}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3659188x+183445742y^2+xy=x^3-659188x+183445742 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3659188xz2+183445742z3y^2z+xyz=x^3-659188xz^2+183445742z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3854307675x+8561407461750y^2=x^3-854307675x+8561407461750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -659188, 183445742])
 
gp: E = ellinit([1, 0, 0, -659188, 183445742])
 
magma: E := EllipticCurve([1, 0, 0, -659188, 183445742]);
 
oscar: E = elliptic_curve([1, 0, 0, -659188, 183445742])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1343/4,1343/8)(1343/4, -1343/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  430950 430950  = 2352132172 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  37853985616382812503785398561638281250 = 231058136172 \cdot 3^{10} \cdot 5^{8} \cdot 13^{6} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  42002147116950191650 \frac{420021471169}{50191650}  = 2131052171748932^{-1} \cdot 3^{-10} \cdot 5^{-2} \cdot 17^{-1} \cdot 7489^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.29574467771035934988394614182.2957446777103593498839461418
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.208551042762540794556822754410.20855104276254079455682275441
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94165841338193530.9416584133819353
Szpiro ratio: σm\sigma_{m} ≈ 3.99344105277646833.9934410527764683

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.240145177545531688582017454730.24014517754553168858201745473
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 80 80  = 1(25)2221 1\cdot( 2 \cdot 5 )\cdot2^{2}\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 4.80290355091063377164034909474.8029035509106337716403490947
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.802903551L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2401451.00000080224.802903551\displaystyle 4.802903551 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.240145 \cdot 1.000000 \cdot 80}{2^2} \approx 4.802903551

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 430950.2.a.im

q+q2+q3+q4+q6+2q7+q8+q9+q12+2q14+q16+q17+q184q19+O(q20) q + q^{2} + q^{3} + q^{4} + q^{6} + 2 q^{7} + q^{8} + q^{9} + q^{12} + 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 8294400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 2 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 430950im1 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 1010 I10I_{10} split multiplicative -1 1 10 10
55 44 I2I_{2}^{*} additive 1 2 8 2
1313 22 I0I_0^{*} additive 1 2 6 0
1717 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [817, 4, 1634, 9], [2037, 4, 2036, 5], [482, 1, 1799, 0], [1361, 4, 682, 9], [257, 1786, 1784, 255], [2, 1, 1019, 0]]
 
GL(2,Integers(2040)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [817, 4, 1634, 9], [2037, 4, 2036, 5], [482, 1, 1799, 0], [1361, 4, 682, 9], [257, 1786, 1784, 255], [2, 1, 1019, 0]];
 
sub<GL(2,Integers(2040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 , index 1212, genus 00, and generators

(1041),(34811),(1225),(1401),(817416349),(2037420365),(482117990),(136146829),(25717861784255),(2110190)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 817 & 4 \\ 1634 & 9 \end{array}\right),\left(\begin{array}{rr} 2037 & 4 \\ 2036 & 5 \end{array}\right),\left(\begin{array}{rr} 482 & 1 \\ 1799 & 0 \end{array}\right),\left(\begin{array}{rr} 1361 & 4 \\ 682 & 9 \end{array}\right),\left(\begin{array}{rr} 257 & 1786 \\ 1784 & 255 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 1019 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2040])K:=\Q(E[2040]) is a degree-231022264320231022264320 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2040Z)\GL_2(\Z/2040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 71825=5213217 71825 = 5^{2} \cdot 13^{2} \cdot 17
33 split multiplicative 44 143650=25213217 143650 = 2 \cdot 5^{2} \cdot 13^{2} \cdot 17
55 additive 1818 5746=213217 5746 = 2 \cdot 13^{2} \cdot 17
1313 additive 8686 2550=235217 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17
1717 split multiplicative 1818 25350=2352132 25350 = 2 \cdot 3 \cdot 5^{2} \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 430950im consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 510c2, its twist by 6565.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.