Properties

Label 431.a
Number of curves $1$
Conductor $431$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 431.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
431.a1 431a1 \([1, 0, 0, 0, -1]\) \(-1/431\) \(-431\) \([]\) \(10\) \(-0.81561\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 431.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 431.a do not have complex multiplication.

Modular form 431.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - 2 q^{7} + 3 q^{8} - 2 q^{9} - q^{10} - 5 q^{11} - q^{12} - 2 q^{13} + 2 q^{14} + q^{15} - q^{16} - 2 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display