Properties

Label 431.a
Number of curves 11
Conductor 431431
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 431.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
431.a1 431a1 [1,0,0,0,1][1, 0, 0, 0, -1] 1/431-1/431 431-431 [][] 1010 0.81561-0.81561 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 431.a1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
4314311+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+T+2T2 1 + T + 2 T^{2} 1.2.b
33 1T+3T2 1 - T + 3 T^{2} 1.3.ab
55 1T+5T2 1 - T + 5 T^{2} 1.5.ab
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 15T+19T2 1 - 5 T + 19 T^{2} 1.19.af
2323 1+T+23T2 1 + T + 23 T^{2} 1.23.b
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 431.a do not have complex multiplication.

Modular form 431.2.a.a

Copy content sage:E.q_eigenform(10)
 
qq2+q3q4+q5q62q7+3q82q9q105q11q122q13+2q14+q15q162q17+2q18+5q19+O(q20)q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - 2 q^{7} + 3 q^{8} - 2 q^{9} - q^{10} - 5 q^{11} - q^{12} - 2 q^{13} + 2 q^{14} + q^{15} - q^{16} - 2 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display