Properties

Label 432450cg2
Conductor 432450432450
Discriminant 1.301×1026-1.301\times 10^{26}
j-invariant 722458663317476656000 \frac{722458663317}{476656000}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2+121261683x+192333546341y^2+xy=x^3-x^2+121261683x+192333546341 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z+121261683xz2+192333546341z3y^2z+xyz=x^3-x^2z+121261683xz^2+192333546341z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+1940186925x+12311287152750y^2=x^3+1940186925x+12311287152750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, 121261683, 192333546341])
 
gp: E = ellinit([1, -1, 0, 121261683, 192333546341])
 
magma: E := EllipticCurve([1, -1, 0, 121261683, 192333546341]);
 
oscar: E = elliptic_curve([1, -1, 0, 121261683, 192333546341])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  432450 432450  = 232523122 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  130102770747121823250000000-130102770747121823250000000 = 1273959319-1 \cdot 2^{7} \cdot 3^{9} \cdot 5^{9} \cdot 31^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  722458663317476656000 \frac{722458663317}{476656000}  = 27365331399732^{-7} \cdot 3^{6} \cdot 5^{-3} \cdot 31^{-3} \cdot 997^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.69966838275614638313003845603.6996683827561463831300384560
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.353996607795440804318642699420.35399660779544080431864269942
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97492046213139270.9749204621313927
Szpiro ratio: σm\sigma_{m} ≈ 5.1978757383039965.197875738303996

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0366797112687060127483107634360.036679711268706012748310763436
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 12222 1\cdot2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.586875380299296203972972214970.58687538029929620397297221497
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.586875380L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0366801.00000016120.586875380\displaystyle 0.586875380 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.036680 \cdot 1.000000 \cdot 16}{1^2} \approx 0.586875380

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 432450.2.a.cg

qq2+q4+q7q83q114q13q14+q166q17q19+O(q20) q - q^{2} + q^{4} + q^{7} - q^{8} - 3 q^{11} - 4 q^{13} - q^{14} + q^{16} - 6 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 139345920
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 2 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 432450cg1 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I7I_{7} nonsplit multiplicative 1 1 7 7
33 22 IIIIII^{*} additive 1 2 9 0
55 22 I3I_{3}^{*} additive 1 2 9 3
3131 44 I3I_{3}^{*} additive -1 2 9 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4, 3, 9, 7], [1861, 6, 1863, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [2791, 6, 933, 19], [1, 6, 0, 1], [1919, 3714, 2037, 3701], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(3720)).subgroup(gens)
 
Gens := [[4, 3, 9, 7], [1861, 6, 1863, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [2791, 6, 933, 19], [1, 6, 0, 1], [1919, 3714, 2037, 3701], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(3720))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3720=233531 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 , index 1616, genus 00, and generators

(4397),(18616186319),(2634107924773546),(3715637147),(743371422293701),(2791693319),(1601),(1919371420373701),(34811),(1061)\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1861 & 6 \\ 1863 & 19 \end{array}\right),\left(\begin{array}{rr} 2634 & 1079 \\ 2477 & 3546 \end{array}\right),\left(\begin{array}{rr} 3715 & 6 \\ 3714 & 7 \end{array}\right),\left(\begin{array}{rr} 743 & 3714 \\ 2229 & 3701 \end{array}\right),\left(\begin{array}{rr} 2791 & 6 \\ 933 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1919 & 3714 \\ 2037 & 3701 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3720])K:=\Q(E[3720]) is a degree-19747307520001974730752000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3720Z)\GL_2(\Z/3720\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 72075=352312 72075 = 3 \cdot 5^{2} \cdot 31^{2}
33 additive 22 48050=252312 48050 = 2 \cdot 5^{2} \cdot 31^{2}
55 additive 1818 17298=232312 17298 = 2 \cdot 3^{2} \cdot 31^{2}
77 good 22 216225=3252312 216225 = 3^{2} \cdot 5^{2} \cdot 31^{2}
3131 additive 512512 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 432450cg consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 2790f1, its twist by 465465.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.